<  Retour au portail Polytechnique Montréal

Received signal strength indicator prediction for mesh networks in a real urban environment using machine learning

Marlon Jeske, Brunilde Sanso, Daniel Aloise et Mariá C. V. Nascimento

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (3MB)
Afficher le résumé
Cacher le résumé

Abstract

Mesh networks are self-managing wireless systems with dynamic topology. These networks differ from broadcast and mobile networks because their mesh nodes can directly exchange information without the intervention of any other infrastructure. However, the radio propagation environment in urban regions, characterized by dense building clusters and human-made structures, influences signal attenuation and path loss. Therefore, deploying these networks brings distinct challenges from the more intensively studied indoor or rural scenarios. In line with this, predicting radio signal propagation attenuation is crucial for planning and deploying reliable networks. The literature on received signal strength indicator (RSSI) prediction for mesh networks in urban areas is scarce. This paper proposes machine learning-based RSSI prediction models for highly urbanized areas. We highlight the most influential features, including the distance between the transmitter and receiver, obstruction details in the first Fresnel zone, and terrain variability measures. Considering data from two mesh networks in the Metropolitan Region of São Paulo, Brazil, owned by a power utility company, we trained a Random Forest and a Support Vector Regression model for the RSSI prediction task. Comparative analysis indicates an improvement of up to 66% in the RSSI prediction error using the Random Forest approach in comparison with classical and empirical models.

Mots clés

Département: Département de génie électrique
Département de génie informatique et génie logiciel
Centre de recherche: GERAD - Groupe d'études et de recherche en analyse des décisions
Organismes subventionnaires: National Council for Scientific and Technological Development (CNPq), São Paulo Research Foundation (FAPESP), Brazilian Federal Agency for Support and Evaluation (CAPES)
Numéro de subvention: 309385/2021-0, 403735/2021-1, 142311/2019-7, 2022/05803-3, 2013/07375-0
URL de PolyPublie: https://publications.polymtl.ca/59869/
Titre de la revue: IEEE Access (vol. 12)
Maison d'édition: IEEE
DOI: 10.1109/access.2024.3492706
URL officielle: https://doi.org/10.1109/access.2024.3492706
Date du dépôt: 19 nov. 2024 11:21
Dernière modification: 31 juil. 2025 08:53
Citer en APA 7: Jeske, M., Sanso, B., Aloise, D., & Nascimento, M. C. V. (2024). Received signal strength indicator prediction for mesh networks in a real urban environment using machine learning. IEEE Access, 12, 165861-165877. https://doi.org/10.1109/access.2024.3492706

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document