Marlon Jeske, Brunilde Sanso, Daniel Aloise
et Mariá C. V. Nascimento
Article de revue (2024)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Télécharger (3MB) |
Abstract
Mesh networks are self-managing wireless systems with dynamic topology. These networks differ from broadcast and mobile networks because their mesh nodes can directly exchange information without the intervention of any other infrastructure. However, the radio propagation environment in urban regions, characterized by dense building clusters and human-made structures, influences signal attenuation and path loss. Therefore, deploying these networks brings distinct challenges from the more intensively studied indoor or rural scenarios. In line with this, predicting radio signal propagation attenuation is crucial for planning and deploying reliable networks. The literature on received signal strength indicator (RSSI) prediction for mesh networks in urban areas is scarce. This paper proposes machine learning-based RSSI prediction models for highly urbanized areas. We highlight the most influential features, including the distance between the transmitter and receiver, obstruction details in the first Fresnel zone, and terrain variability measures. Considering data from two mesh networks in the Metropolitan Region of São Paulo, Brazil, owned by a power utility company, we trained a Random Forest and a Support Vector Regression model for the RSSI prediction task. Comparative analysis indicates an improvement of up to 66% in the RSSI prediction error using the Random Forest approach in comparison with classical and empirical models.
Mots clés
| Département: |
Département de génie électrique Département de génie informatique et génie logiciel |
|---|---|
| Centre de recherche: | GERAD - Groupe d'études et de recherche en analyse des décisions |
| Organismes subventionnaires: | National Council for Scientific and Technological Development (CNPq), São Paulo Research Foundation (FAPESP), Brazilian Federal Agency for Support and Evaluation (CAPES) |
| Numéro de subvention: | 309385/2021-0, 403735/2021-1, 142311/2019-7, 2022/05803-3, 2013/07375-0 |
| URL de PolyPublie: | https://publications.polymtl.ca/59869/ |
| Titre de la revue: | IEEE Access (vol. 12) |
| Maison d'édition: | IEEE |
| DOI: | 10.1109/access.2024.3492706 |
| URL officielle: | https://doi.org/10.1109/access.2024.3492706 |
| Date du dépôt: | 19 nov. 2024 11:21 |
| Dernière modification: | 31 juil. 2025 08:53 |
| Citer en APA 7: | Jeske, M., Sanso, B., Aloise, D., & Nascimento, M. C. V. (2024). Received signal strength indicator prediction for mesh networks in a real urban environment using machine learning. IEEE Access, 12, 165861-165877. https://doi.org/10.1109/access.2024.3492706 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
