<  Back to the Polytechnique Montréal portal

How to Better Fit Reinforcement Learning for Pentesting: A New Hierarchical Approach

Marc-Antoine Faillon, Baptiste Bout, Julien Francq, Christopher Neal, Nora Boulahia Cuppens, Frédéric Cuppens and Reda Yaich

Paper (2024)

An external link is available for this item
Department: Department of Computer Engineering and Software Engineering
ISBN: 9783031709036
PolyPublie URL: https://publications.polymtl.ca/59494/
Conference Title: 29th European Symposium on Research in Computer Security (ESORICS 2024)
Conference Location: Bydgoszcz, Poland
Conference Date(s): 2024-09-16 - 2024-09-20
Publisher: Springer
DOI: 10.1007/978-3-031-70903-6_16
Official URL: https://doi.org/10.1007/978-3-031-70903-6_16
Date Deposited: 29 Oct 2024 13:18
Last Modified: 08 Apr 2025 14:41
Cite in APA 7: Faillon, M.-A., Bout, B., Francq, J., Neal, C., Boulahia Cuppens, N., Cuppens, F., & Yaich, R. (2024, September). How to Better Fit Reinforcement Learning for Pentesting: A New Hierarchical Approach [Paper]. 29th European Symposium on Research in Computer Security (ESORICS 2024), Bydgoszcz, Poland. https://doi.org/10.1007/978-3-031-70903-6_16

Statistics

Dimensions

Repository Staff Only

View Item View Item