Marc-Antoine Faillon, Baptiste Bout, Julien Francq, Christopher Neal, Nora Boulahia Cuppens, Frédéric Cuppens
and Reda Yaich
Paper (2024)
An external link is available for this itemDepartment: | Department of Computer Engineering and Software Engineering |
---|---|
ISBN: | 9783031709036 |
PolyPublie URL: | https://publications.polymtl.ca/59494/ |
Conference Title: | 29th European Symposium on Research in Computer Security (ESORICS 2024) |
Conference Location: | Bydgoszcz, Poland |
Conference Date(s): | 2024-09-16 - 2024-09-20 |
Publisher: | Springer |
DOI: | 10.1007/978-3-031-70903-6_16 |
Official URL: | https://doi.org/10.1007/978-3-031-70903-6_16 |
Date Deposited: | 29 Oct 2024 13:18 |
Last Modified: | 08 Apr 2025 14:41 |
Cite in APA 7: | Faillon, M.-A., Bout, B., Francq, J., Neal, C., Boulahia Cuppens, N., Cuppens, F., & Yaich, R. (2024, September). How to Better Fit Reinforcement Learning for Pentesting: A New Hierarchical Approach [Paper]. 29th European Symposium on Research in Computer Security (ESORICS 2024), Bydgoszcz, Poland. https://doi.org/10.1007/978-3-031-70903-6_16 |
---|---|
Statistics
Dimensions