Khalil Sabri, Célia Djilali, Guillaume-Alexandre Bilodeau, Nicolas Saunier et Wassim Bouachir
Communication écrite (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (14MB) |
Abstract
Urban traffic environments present unique challenges for object detection, particularly with the increasing presence of micromobility vehicles like e-scooters and bikes. To address this object detection problem, this work introduces an adapted detection model that combines the accuracy and speed of single-frame object detection with the richer features offered by video object detection frameworks. This is done by applying aggregated feature maps from consecutive frames processed through motion flow to the YOLOX architecture. This fusion brings a temporal perspective to YOLOX detection abilities, allowing for a better understanding of urban mobility patterns and substantially improving detection reliability. Tested on a custom dataset curated for urban micromobility scenarios, our model showcases substantial improvement over existing state-of-the-art methods, demonstrating the need to consider spatiotemporal information for detecting such small and thin objects. Our approach enhances detection in challenging conditions, including occlusions, ensuring temporal consistency, and effectively mitigating motion blur.
Mots clés
urban Traffic; micro-mobility detection; object detection; YOLO; video object detection; autonomous vehicles; urban transportation safety
Sujet(s): |
1000 Génie civil > 1000 Génie civil 1000 Génie civil > 1003 Génie du transport 2700 Technologie de l'information > 2700 Technologie de l'information |
---|---|
Département: |
Département de génie informatique et génie logiciel Département des génies civil, géologique et des mines |
URL de PolyPublie: | https://publications.polymtl.ca/59424/ |
Nom de la conférence: | 21st Conference on Robots and Vision (CVR 2024) |
Lieu de la conférence: | Guelph, ON, Canada |
Date(s) de la conférence: | 2024-05-28 - 2024-05-31 |
DOI: | 10.21428/d82e957c.abc3243f |
URL officielle: | https://doi.org/10.21428/d82e957c.abc3243f |
Date du dépôt: | 15 nov. 2024 09:53 |
Dernière modification: | 16 nov. 2024 15:22 |
Citer en APA 7: | Sabri, K., Djilali, C., Bilodeau, G.-A., Saunier, N., & Bouachir, W. (mai 2024). Detection of micromobility vehicles in urban traffic videos [Communication écrite]. 21st Conference on Robots and Vision (CVR 2024), Guelph, ON, Canada (8 pages). https://doi.org/10.21428/d82e957c.abc3243f |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions