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Montréal, Canada
{khalil.sabri,celia.djilali,gabilodeau,nicolas.saunier}@polymtl.ca

Wassim Bouachir
University of Québec (TÉLUQ)
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Abstract—Urban traffic environments present unique chal-
lenges for object detection, particularly with the increasing
presence of micromobility vehicles like e-scooters and bikes. To
address this object detection problem, this work introduces an
adapted detection model that combines the accuracy and speed
of single-frame object detection with the richer features offered
by video object detection frameworks. This is done by applying
aggregated feature maps from consecutive frames processed
through motion flow to the YOLOX architecture. This fusion
brings a temporal perspective to YOLOX detection abilities,
allowing for a better understanding of urban mobility patterns
and substantially improving detection reliability. Tested on a
custom dataset curated for urban micromobility scenarios, our
model showcases substantial improvement over existing state-
of-the-art methods, demonstrating the need to consider spatio-
temporal information for detecting such small and thin objects.
Our approach enhances detection in challenging conditions, in-
cluding occlusions, ensuring temporal consistency, and effectively
mitigating motion blur.

Index Terms—Urban Traffic, Micro-Mobility Detection, Object
Detection, YOLO, Video Object Detection, Autonomous Vehicles,
Urban Transportation Safety

I. INTRODUCTION

In recent years, urban transportation has undergone a sig-
nificant transformation with the emergence of micromobility
solutions, in particular electric version of bikes, scooters, and
skateboards. These modes of transport, renowned for their
agility and environmental benefits, are reshaping short-distance
commutes in bustling cities. However, the integration of these
vehicles into the urban landscape is not without challenges.
Their unique manoeuvrability and smaller footprints, while
advantageous for users, complicate detection amidst heavy
traffic, elevating safety risks.

The objective of this work is to design a robust micromo-
bility vehicles (MMV) detection system, a critical component
in ensuring the safety of both riders and surrounding traffic,
particularly in the era of automated vehicles. As well, counting
MMVs, their origins and destinations is an important com-
ponent of efficient city planning. As micromobility solutions
become increasingly prevalent in urban landscapes, the inte-
gration of such detection systems is paramount, not only for
current traffic dynamics but also as a foundational technology
for the seamless operation of future automated transportation
systems.

This paper presents a novel detection model, FGFA-
YOLOX, that synthesizes the strengths of image-based and
video-based object detection methodologies. Our approach
leverages the rapid and efficient image analysis capability of
the YOLOX framework [6], integrating it with the temporal
context consideration of video object detection systems ( [17]–
[19]). This fusion aims to enhance detection consistency and
accuracy in urban traffic scenarios, addressing the unique
challenges posed by micromobility vehicles. This is done by
applying aggregated feature maps from consecutive frames
processed through motion flow to the YOLOX architecture.
With this strategy, our method can benefit from the large
number of readily available pre-trained models for YOLOX.
Aggregation of feature maps than enhances the capabilities of
the detector, thanks to the combination of several of object
views, with some more informative than others.

To rigorously evaluate the performance of our proposed
model against state-of-the-art (SOTA) methods, we con-
structed a new custom dataset focused on micromobility sce-
narios. Our findings indicate that our proposed model achieves
superior performance compared to SOTA methods, demon-
strating the need to consider spatio-temporal information for
detecting such small and thin objects. Our contributions can
be summarized as follows.

1) We propose a novel video object detection architecture,
FGFA-YOLOX, adapted for MMV and taking advantage
from both the capabilities of single-frame object detec-
tion (accuracy and speed, several available pre-trained
models) and the richer feature representation of video
object detectors;

2) We constructed a new dataset that we make publicly
available for the evaluation of MMV object detectors,
along with our source code that we provide to ensure
reproducibility and reusability. Our model weights, code,
and dataset are publicly available for further research
and replication of our results at https://github.com/
sabrikhalil/Micro Mobility Detection.

II. RELATED WORK

Few works have considered micromobility vehicle (MMV)
detection. The study by Apurv et al. [1] introduced an ap-
proach for identifying e-scooter riders using a system com-
prised of two distinct modules. The first module employs a
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pre-trained YoloV3 model [14] for effective initial detection
of pedestrians. Following this, the second module comes into
play, which involves expanding the bounding boxes around
the detected individuals to encompass the e-scooter along
with the rider. This expansion is essential to ensure the
entire vehicle, including both the rider and the e-scooter, is
captured. The process is further refined using a MobileNetV2
classifier [15], trained on a specialized dataset, to distinguish
whether a person is with or without an e-scooter. This two-
module system permits to accurately identify e-scooter riders.
Building on this previous work, Gilroy et al. [7] extended
the research for overcoming occlusion challenges in urban
environments. They modify the YoloV3 architecture, tailoring
it to detect partially visible e-scooter riders more reliably.
This enhancement significantly improves the detection rates
in scenarios where riders are obscured.

In contrast to these two previous works that focus on detect-
ing a single vehicle category, e-scooter, our research aims to
include a variety of MMVs. We thus aim to establish a more
versatile framework. Our goal is to enhance MMV detection
capabilities to not only address occlusion challenges, but also
to incorporate resilience against motion blur, a frequent issue
in rapidly moving vehicles, and to ensure consistent detection
across video frames.

In single-frame object detection, two primary categories
emerge: two-stage and one-stage models. The two-stage mod-
els, exemplified by R-FCN [4], adopt a sequential approach.
Initially, region proposals are generated and subsequently they
are classified into different object categories. This intricate
process, while delivering precision, tends to be more computa-
tionally intensive, leading to slower inference times compared
to one-stage models. One-stage models, like YOLO [13] and
its iterations like YOLOX [6], streamline the detection pro-
cess. YOLO considers object detection as a single regression
problem, directly moving from image pixels to bounding box
coordinates and class probabilities. Nevertheless, for all single
frame approaches, their frame-by-frame nature might lead to
detection inconsistency in video due to challenges like motion
blur and occlusions, highlighting the need for models that
maintain temporal consistency.

In the evolving landscape of video object detection, Deep
Feature Flow (DFF) [19] marked a significant progress.
DFF emerged as a response to the computational demand
of traditional methods. By innovatively employing keyframe
feature extraction and utilizing optical flow, DFF transfers
these features to adjacent non-key frames. This methodology
not only accelerates the detection process but also alleviates
the computational burden, making it a pivotal development
for more efficient video object detection. Building on DFF
emphasis on efficiency, Flow-guided Feature Aggregation
(FGFA) [18] took a step further, enhancing the quality of the
features. FGFA aggregates and adaptively weights deformed
feature maps from neighbouring frames. This process, aided
by optical flow, improves accuracy by integrating relevant
data across frames, addressing challenges like motion blur and
occlusion. Similarly, Sequence Level Semantics Aggregation

(SELSA) [17] was proposed with a focus on the semantic
relationships between objects across frames. SELSA analyzes
and aggregates features based on semantic similarities, leading
to more contextually aware and precise object detection.

III. METHODOLOGY

A. Motivation

While one-stage single-frame detection models like YOLOX
[13] are efficient, they struggle with issues specific to videos,
such as inconsistent detections over frames, motion blur, and
occlusions. On the other hand, video object detection models
that consider multiple frames provide better temporal consis-
tency, but often lack the speed, the modern feature extraction
strategies and the availabilty of pre-trained weights of one-
stage models. To bridge this gap, we propose to combine
the speed and accuracy of YOLOX [6] with the temporal
coherence of Flow-guided Feature Aggregation (FGFA) [18],
aiming for a balanced solution in video object detection.
We name our method FGFA-YOLOX. Figure 1 provides an
overview of our proposed detection framework, showcasing
the enhancement of the current frame feature map with
motion-adjusted neighbour frames and subsequent processing
through the YOLOX architecture neck and head for effective
detection.

B. Problem Statement

Detecting micromobility vehicles (MMV) like e-scooters,
bicycles, and skateboards in urban traffic involves chal-
lenges due to their size, movements, and the potential
for occlusions. Given a sequence of video frames F =
{ft−N , . . . , ft, . . . , ft+N}, where ft is the current frame at
time t and N indicates the number of contextual frames in the
past and in the future, our goal is to accurately detect MMV
in ft. The goal is to find a function D that, applied to the
current frame ft and an aggregated feature map G derived from
both ft and its contextual frames, yields detections defined by
bounding boxes B, class labels L, and confidence scores S:

D(ft,G) → {(B,L, S)}. (1)

C. Integrated Detection Model Framework

Feature Extraction: As shown in Figure 1, the first step of
our approach is to perform feature extraction. The CSPDarknet
backbone B extracts spatial features St from the current
frame ft and Scontext from the neighbouring contextual frames,
defined as:

St = B(ft), (2)

and

Scontext =

t+N⋃
i=t−N,i̸=t

B(fi). (3)

The CSPDarknet backbone, selected for feature extraction
in our model, was shown to be very efficient and capable by
Wang et al. [16]. This architecture is efficient in optimizing
gradient flow and reducing computational load, making it ideal



Fig. 1: FGFA-YOLOX detection framework overview. Features from input frames are first extracted with the backbone of
YOLOX. The optical flows of the current frame with past and future frames (neighbour frames) are also computed. For
temporal aggregation, the motion-adjusted features of the neighbour frames are aggregated with those of the current frame.
The aggregated features are then processes through the YOLOX architecture neck and head for detection.

for detecting objects of varying sizes, particularly micromo-
bility vehicles (MMV) in urban environments. For an input
image, this backbone produces feature maps with dimensions
H ×W ×C, where H and W represent the height and width
of the reduced spatial resolution of the output feature maps,
and C symbolizes the channel depth, which is C1, C2, or
C3 for each scale, adapting to the pyramid feature network
requirements. This downsampling is essential for processing
high-resolution inputs efficiently while retaining significant
spatial features necessary for accurate object detection.
Temporal Alignment and Aggregation: As shown in Fig-
ure 1, the second step is feature aggregation. A motion
estimation function M aligns context frame features Scontext
with the current frame feature St. This alignment ensures that
the features are spatially coherent and results in features:

Saligned = M(Scontext,St). (4)

FlowNetSimple [5] is used to implement the motion esti-
mation function M to align feature maps from context frames
to the current frame feature map. This process aligns Scontext,
with dimensions H×W×C, to the spatial configuration of St

to closely mirror the current frame feature map in both spatial
and channel dimensions, effectively capturing the estimated
features at time t. This alignment enables a more accurate
representation of the scene at the current moment, laying
the groundwork for subsequent feature aggregation to further
enhance detection capabilities in evolving urban environments.

These aligned features are aggregated with St via the
aggregation function A, forming an enriched feature map G
that captures both spatial and temporal characteristics:

G = A(Saligned,St). (5)

In our method, the aggregation function A employs con-
catenation and convolutions for merging Saligned and St. This
operation is realized through a concatenation step, formulated
as:

Sstacked = Concat(Saligned,St), (6)

that effectively doubles the channel size of the input features,
preparing them for the subsequent convolution process. The
convolution, employing a 3×3 kernel, is designed to integrate
and refine the concatenated features, resulting in:

G = Conv3×3(Sstacked), (7)

where G is the output feature map with dimensions H×W×C,
maintaining the original spatial dimensions while encapsulat-
ing an enriched representation of both spatial and temporal
information.
Detection and Classification: Finally, as shown in Figure 1,
detection and classification is performed through the neck and
head. After aggregating features to obtain G, the YOLOX-
PAFPN neck N is employed. The ’PAFPN’ in YOLOXPAFPN
denotes Path Aggregation Feature Pyramid Network, which
enhances multi-scale feature fusion by leveraging the Path
Aggregation Network (PAN) for efficient optimization [12].
This configuration refines the feature processing across scales,
optimally preparing them for the detection task. The YOLOX
head H processes the enriched feature map to detect Micro-
mobility Vehicles (MMV) within the current frame ft. This
sequential application of the neck and head on G is given by:



(B,L, S) = D(ft,G) = H ◦N (G). (8)

In more details, our method employs a feature pyramid net-
work (FPN) [10] in the form of YOLOXPAFPN for integrating
the multi-scale feature maps. This approach ensures good
detection across various object sizes, crucial for smaller targets
requiring high-resolution recognition. The process involves
merging aggregated feature maps GC1, GC2, and GC3, each
indicative of a unique scale within the detection framework:

N (G) = FPN(GC1,GC2,GC3) (9)

This integration yields N (G), a composite feature map of
H×W×C, standardizing the output to facilitate precise, scale-
invariant object detection. Through this pyramid approach,
the model effectively consolidates spatial and scale data,
enhancing detection accuracy in varied urban environments.

The YOLOX head, H, which is the concluding component
in our detection framework, utilizes the feature map N (G) to
delineate to location of objects and classify them. It conducts
a detailed analysis on N (G), outputting a set of detections D,
each defined by a bounding box B, a class label L, and a
confidence score S as presented in equation 8.

This operation is key to identifying and classifying MMV
accurately, incorporating confidence scores S to gauge the
reliability of each detection. By handling N (G) from the
YOLOXPAFPN neck, the head ensures detailed detection
across varying object sizes, essential for monitoring dynamic
urban scenes. This approach maintains consistency with our
problem statement, underlining the necessity of combining
current frame analysis with contextual features for robust and
accurate MMV detection.

IV. EXPERIMENTS

This section outlines the experimental setup and the eval-
uation of our proposed model, including the dataset used,
evaluation metrics, implementation details, and comparison
with state-of-the-art (SOTA) models.

A. Dataset

1) Dataset Collection and Construction: A custom dataset,
named PolyMMV, was developed to address the detection of
MMV, given the scarcity of suitable existing datasets. Sourced
from a variety of online public video hosting platforms, this
dataset aims to mirror the diversity of real-world urban micro-
mobility, covering bicycles, skateboards, and electric scooters
as primary classes.

For research reproducibility and further exploration, the
dataset, including annotations in YOLO, COCO, and VOC for-
mats, is available at our GitHub repository: https://github.com/
sabrikhalil/Micro Mobility Detection. This initiative supports
the advancement of urban MMV detection research. Figure 2
presents samples of annotated images from the training set.
These examples, randomly chosen and representing various
classes, showcase the real-world diversity in object sizes,
positions, lighting conditions, and occasional occlusions. Some

images also feature objects from multiple classes, adding to
the dataset complexity.

2) Annotation Process and Dataset Characteristics: The
videos were annotated using the Computer Vision Annotation
Tool (CVAT). The annotation process involved labelling bicy-
cles, skateboards, and electric scooters with bounding boxes.
Figure 3 shows the characteristics of our dataset. The training
set contains 80 videos, and the test set comprises 25 videos.
As seen in Figure 3, the training data includes around 6000
bounding boxes for bicycles, and approximately 5000 each for
electric scooters and skateboards. This balanced distribution
facilitate the training of the model across different MMV
classes. The diverse sizes and positions of the bounding boxes,
representative of real-world scenarios, are also visible in the
figure.

Fig. 3: Characteristics of the training dataset of PolyMMV.
Top left: the number of instances distribution of bicycles,
skateboards, and e-scooters, top right: illustration of the size
distribution of bounding boxes, bottom left and right depict the
scatter plots of normalized bounding box positions and sizes,
respectively.

In contrast, the test set is designed to evaluate the model
generalization capabilities and includes 4000 instances of
bicycles, 2500 skateboards, and 2000 electric scooters.

B. Evaluation Metrics

For the evaluation of our model, we used the mean Average
Precision (mAP) and mAP@50 metrics. The mAP provides
an overall effectiveness of the model by averaging the preci-
sion across different recall levels and object categories, and
mAP@50 specifically considers detections as correct if they
have an Intersection over Union (IoU) of more than 50%
with the ground-truth. AP is similar to the mAP, but used
for each individual object class. These metrics are particularly
relevant in object detection tasks to measure the accuracy of
the model in identifying and localizing objects correctly. Our
evaluation metrics align with the standards set by the COCO
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Fig. 2: Examples of annotated images in PolyMMV. Class 0: Bicycles, Class 1: Skateboards, Class 2: Electric Scooters

evaluation protocols, which are widely recognized for their
comprehensiveness in assessing object detection performance
[11].

C. Implementation Details and Model Training

Our models were implemented using Python and the Py-
Torch framework, alongside mmtracking [3] for video object
detection and OpenCV [2] for video data handling. We in-
tegrated YOLOX into the FGFA framework, utilizing com-
ponents that were pre-trained on specific datasets to enhance
their robustness and effectiveness. The YOLOX backbone used
for object detection, was pre-trained on the COCO dataset
[11]. Its configuration, with a deepen factor of 1.33 and a
widen factor of 1.25, effectively enhances the network ability
to capture intricate details without excessive computational
demands. This is crucial for real-time video analysis. The input
image size is 640 × 640, giving values C1 = 320, C2 = 640
and C3 = 1280. The FlowNetSimple [5], [8] module is used
for motion estimation and was pre-trained on the Flying Chairs
dataset [5], as described in the original FlowNet study.

Our FGFA-YOLOX model and the DFF-YOLOX vari-
ant underwent fine-tuning from COCO pre-trained weights
using an SGD optimizer with an initial learning rate of
0.0001, momentum of 0.9, and weight decay of 0.00001 over

three epochs, incorporating a warm-up phase during the first
500 iterations. Similarly, RFCN-based methods (DFF-RFCN,
FGFA-RFCN, SELSA-RFCN) were initially trained with an
R-FCN detector on COCO video data, with subsequent fine-
tuning for our MMV detection task that adjusted the learning
rate to 0.01, alongside comparable momentum and weight
decay settings. For YOLOv8, originally designed for single-
image object detection and also pre-trained on the COCO
dataset, we adapted it for video detection by sampling at 10
frames per second to avoid overfitting from frame redundancy
and utilized dropout techniques to improve generalization.
This multifaceted approach to training, including specific
learning rate adjustments and dataset-oriented refinements for
each model, was crucial in enhancing detection capabilities
across diverse urban environments.

D. Comparison with State-of-the-Art Object detectors

Table I presents a performance comparison between our pro-
posed detector FGFA-YOLOX and various SOTA object detec-
tion models, highlighting its superior performance, achieving
the highest scores in mAP and mAP@50. It particularly
improves in detecting skateboards, a challenging category due
to their smaller size, frequent occlusion by the rider’s feet,
and motion blur as evidenced in Figure 4B. Bicycles also



Models mAP mAP@50 AP-bicycle AP-skateboard AP-scooter Inference Time per Frame
DFF - RFCN [19] 27.9 57.6 33.8 8.2 41.7 41.4
FGFA - RFCN [18] 31.2 61.1 38.9 10.0 44.7 418.1
SELSA - RFCN [17] 31.0 62.4 36.6 11.6 44.7 317.0
YOLOv8 [9] 34.5 64.2 39.2 17.7 46.7 34.2
FGFA - YOLOX (ours) 38.6 69.4 45.0 23.2 47.6 329.7

TABLE I: Comparison of model performances and inference times on PolyMMV dataset. mAP and AP are in percentage.
Inference time are in milliseconds. Best scores in bold font.

saw a considerable increase in detection accuracy, benefiting
from the model’s robust feature extraction and aggregation
capabilities. In contrast, e-scooters, which tend to move slower
and exhibit more consistent movement patterns, showed less
improvement. This variance underscores the model’s adapt-
ability to different object characteristics within urban traffic
scenarios.

TABLE II: Confusion matrix for the detection of micromobil-
ity vehicles on PolyMMV, assuming an IoU threshold of 0.5.

Predicted Class
Actual Class Bicycle Skateboard E-scooter Background

Bicycle 0.83 0 0 0.17
Skateboard 0 0.44 0 0.56
E-scooter 0.02 0 0.66 0.32

Background 0.57 0.26 0.17 0

The confusion matrix for our FGFA-YOLOX confirms our
previous observations. The model excels in separating classes
by learning from several frames. Specifically, 44% of skate-
boards are correctly detected while this number is 31% for
FGFA-RFCN and 35% for YOLOv8 [9], representing a signif-
icant improvement. However, there are areas for improvement,
particularly in fine-tuning IoU thresholds to better balance
the detection of micromobility vehicles against complex urban
backgrounds. This adjustment is aimed at reducing the higher
incidence of false positives observed, enhancing the model’s
precision. Further diversifying our training dataset will also
support this goal, enabling the model to more accurately
recognize electric scooters, bicycles, and skateboards in a
variety of urban scenarios.

Table I also illustrates the inference times of various de-
tection models. Our FGFA-YOLOX model notably achieves
faster inference times compared to FGFA-RFCN, but shows
that using several frame for detecting is more costly than for
example YOLOv8.

E. Model Performance in Various Scenarios

To illustrate the performance of FGFA-YOLOX, we will
discuss in the following sample qualitative results in three
complex urban traffic scenarios: occlusion, motion blur, and
temporal consistency. The figure 4 below contrasts our model
performance with that of single-frame detection models like
YOLOV8 and video-based models like FGFA-RFCN, show-
casing our approach robustness in handling these challenges.

Occlusion Handling: In dense urban environments, vehi-
cles often become partially occluded. Our model excels in such
scenarios, effectively detecting MMVs despite occlusions.

As depicted in figure 4A, our model successfully identifies
vehicles that are partially hidden, a task where the YOLOV8
model struggles due to its reliance on single-frame analysis.

Motion Blur: Figure 4B illustrates our FGFA-YOLOX
ability to handle motion blur caused by rapid movements,
which is a significant challenge for single-frame models, like
YOLOV8, that do not utilize past frames for continuous object
identification and can be affected by motion blur. Unlike
YOLOV8, our model mitigates the effects of motion blur,
ensuring more detection of fast-moving objects, particularly
skateboards.

Improved Temporal Consistency: Figure 4C demonstrates
that our model enhances temporal consistency. While tradi-
tional video object detection models may show variability
in detections across frames, our model maintains stable and
accurate detection, important for real-time monitoring and
autonomous navigation in urban traffic.

The combined strengths of our model, merging the precision
of single-frame detection with the comprehensive context of
video object detection, offer a significant advancement in
addressing the diverse challenges of urban traffic conditions
for MMV detection.

V. CONCLUSION

This paper introduces a novel detection model that lever-
ages both single-frame precision and video object detection
capabilities for accurately identifying MMV in urban envi-
ronments. Our approach, validated on a new MMV dataset,
demonstrates significant improvements over existing methods
by incorporating spatio-temporal information for enhanced
detection performance.

Our research opens avenues for exploring attention mech-
anisms and innovative architectures for feature aggregation.
Integrating attention mechanisms into the model could refine
its focus on relevant features, improving occlusion handling
and detection of small or partially visible vehicles.
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