<  Retour au portail Polytechnique Montréal

A comprehensive evaluation of neural SPARQL query generation from natural language questions

Papa Abdou Karim Karou Diallo, Samuel Reyd et Amal Zouaq

Article de revue (2024)

Document en libre accès chez l'éditeur officiel
Un lien externe est disponible pour ce document
Afficher le résumé
Cacher le résumé

Abstract

In recent years, the field of neural machine translation (NMT) for SPARQL query generation has witnessed significant growth. Incorporating the copy mechanism with traditional encoder-decoder architectures and using pre-trained encoder-decoder and large language models have set new performance benchmarks. This paper presents various experiments that replicate and expand upon recent NMT-based SPARQL generation studies, comparing pre-trained language models (PLMs), non-pre-trained language models (NPLMs), and large language models (LLMs), highlighting the impact of question annotation and the copy mechanism and testing various fine-tuning methods using LLMs. In particular, we provide a systematic error analysis of the models and test their generalization ability. Our study demonstrates that the copy mechanism yields significant performance enhancements for most PLMs and NPLMs. Annotating the data is pivotal to generating correct URIs, with the "tag-within" strategy emerging as the most effective approach. Additionally, our findings reveal that the primary source of errors stems from incorrect URIs in SPARQL queries that are sometimes replaced with hallucinated URIs when using base models. This does not happen using the copy mechanism, but it sometimes leads to selecting wrong URIs among candidates. Finally, the performance of the tested LLMs fell short of achieving the desired outcomes.

Mots clés

SPARQL query generation; knowledge base; copy mechanism; non pre-trained and pretrained encoders-decoders

Sujet(s): 2700 Technologie de l'information > 2706 Génie logiciel
Département: Département de génie informatique et génie logiciel
Centre de recherche: Labo LAMA-WeST
Organismes subventionnaires: Natural Sciences and Engineering Research Council of Canada
URL de PolyPublie: https://publications.polymtl.ca/59168/
Titre de la revue: IEEE Access
Maison d'édition: Institute of Electrical and Electronics Engineers
DOI: 10.1109/access.2024.3453215
URL officielle: https://doi.org/10.1109/access.2024.3453215
Date du dépôt: 04 sept. 2024 00:09
Dernière modification: 25 sept. 2024 16:51
Citer en APA 7: Diallo, P. A. K. K., Reyd, S., & Zouaq, A. (2024). A comprehensive evaluation of neural SPARQL query generation from natural language questions. IEEE Access, 3453215 (22 pages). https://doi.org/10.1109/access.2024.3453215

Statistiques

Dimensions

Actions réservées au personnel

Afficher document Afficher document