Eslam G. Al-Sakkari, Ahmed Ragab, Mohamed Ali, Hanane Dagdougui, Daria Camilla Boffito
et Mouloud Amazouz
Communication écrite (2024)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Partage dans les mêmes conditions (CC BY-SA) Télécharger (1MB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution-Partage dans les mêmes conditions (CC BY-SA) Télécharger (315kB) |
Abstract
This paper proposes an AI-assisted approach aimed at accelerating chemical process design through causal incremental reinforcement learning (CIRL) where an intelligent agent is interacting iteratively with a process simulation environment (e.g., Aspen HYSYS, DWSIM, etc.). The proposed approach is based on an incremental learnable optimizer capable of guiding multi-objective optimization towards optimal design variable configurations, depending on several factors including the problem complexity, selected RL algorithm and hyperparameters tuning. One advantage of this approach is that the agent-simulator interaction significantly reduces the vast search space of design variables, leading to an accelerated and optimized design process. This is a generic causal approach that enables the exploration of new process configurations and provides actionable insights to designers to improve not only the process design but also the design process across various applications. The approach was validated on industrial processes including an absorption-based carbon capture, considering the economic and technological uncertainties of different capture processes, such as energy price, production cost, and storage capacity. It achieved a cost reduction of up to 5.5% for the designed capture process, after a few iterations, while also providing the designer with actionable insights. From a broader perspective, the proposed approach paves the way for accelerating the adoption of decarbonization technologies (CCUS value chains, clean fuel production, etc.) at a larger scale, thus catalyzing climate change mitigation.
Mots clés
| Département: |
Département de génie chimique Département de mathématiques et de génie industriel |
|---|---|
| ISBN: | 9781777940324 |
| URL de PolyPublie: | https://publications.polymtl.ca/59054/ |
| Nom de la conférence: | 10th International Conference on Foundations of Computer Aid Process Design (FOCAPD 2024) |
| Lieu de la conférence: | Breckenridge, Colorado, USA |
| Date(s) de la conférence: | 2024-07-14 - 2024-07-18 |
| Éditeurs ou éditrices: | Thomas A. Adams, Matt Bassett, Seleh Cremashi et Monica Zanfir |
| Maison d'édition: | PSE Community.org |
| DOI: | 10.69997/sct.103483 |
| Autres DOI associés à ce document: | https://psecommunity.org/LAPSE:2024.1534 |
| URL officielle: | https://doi.org/10.69997/sct.103483 |
| Date du dépôt: | 27 août 2024 13:52 |
| Dernière modification: | 02 déc. 2025 07:51 |
| Citer en APA 7: | Al-Sakkari, E. G., Ragab, A., Ali, M., Dagdougui, H., Boffito, D. C., & Amazouz, M. (juillet 2024). Learn-to-design : reinforcement learning-assisted chemical process optimization [Communication écrite]. 10th International Conference on Foundations of Computer Aid Process Design (FOCAPD 2024), Breckenridge, Colorado, USA. https://doi.org/10.69997/sct.103483 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
