Marco Rossi, Teun A. J. van Schijndel, Pim Lueb, Ghada Badawy, Jason Jung, Wouter H. J. Peeters, Sebastian Kölling, Oussama Moutanabbir, Marcel A. Verheijen et Erik P. A. M. Bakkers
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (2MB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (21MB) |
Abstract
Among the experimental realization of fault-tolerant topological circuits are interconnecting nanowires with minimal disorder. Out-of-plane indium antimonide (InSb) nanowire networks formed by merging are potential candidates. Yet, their growth requires a foreign material stem usually made of InP–InAs. This stem imposes limitations, which include restricting the size of the nanowire network, inducing disorder through grain boundaries and impurity incorporation. Here, we omit the stem allowing for the growth of stemless InSb nanowire networks on an InP substrate. To enable the growth without the stem, we show that a preconditioning step using arsine (AsH3) is required before InSb growth. High-yield of stemless nanowire growth is achieved by patterning the substrate with a selective-area mask with nanohole cavities, containing restricted gold droplets from which nanowires originate. Interestingly, these nanowires are bent, posing challenges for the synthesis of interconnecting nanowire networks due to merging failure. We attribute this bending to the non-homogeneous incorporation of arsenic impurities in the InSb nanowires and the interposed lattice-mismatch. By tuning the growth parameters, we can mitigate the bending, yielding large and single crystalline InSb nanowire networks and nanoflakes. The improved size and crystal quality of these nanostructures broaden the potential of this technique for fabricating advanced quantum devices.
Mots clés
nanowires; metal organic vapor phase epitaxy; InSb; bending; nanoflakes
Sujet(s): |
2500 Génie électrique et électronique > 2500 Génie électrique et électronique 3100 Physique > 3100 Physique |
---|---|
Département: | Département de génie physique |
Organismes subventionnaires: | NSERC / CRSNG, European Research Council, Dutch Organization for Scientific Research (NWO), Solliance, TNO, Holst, TU/e, imec, Forschungszentrum Jülich, Dutch province of Noord-Brabant, Canada Research Chairs, Canada Foundation for Innovation |
Numéro de subvention: | ERC TOCINA 834290 |
URL de PolyPublie: | https://publications.polymtl.ca/58954/ |
Titre de la revue: | Nanotechnology (vol. 35, no 41) |
Maison d'édition: | IOP Publishing |
DOI: | 10.1088/1361-6528/ad61ef |
Autres DOI associés à ce document: | 10.5281/zenodo.10868471 |
URL officielle: | https://doi.org/10.1088/1361-6528/ad61ef |
Date du dépôt: | 06 août 2024 13:57 |
Dernière modification: | 21 nov. 2024 03:19 |
Citer en APA 7: | Rossi, M., van Schijndel, T. A. J., Lueb, P., Badawy, G., Jung, J., Peeters, W. H. J., Kölling, S., Moutanabbir, O., Verheijen, M. A., & Bakkers, E. P. A. M. (2024). Stemless InSb nanowire networks and nanoflakes grown on InP. Nanotechnology, 35(41), 415602 (11 pages). https://doi.org/10.1088/1361-6528/ad61ef |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions