<  Retour au portail Polytechnique Montréal

Multi-planar dual adversarial network based on dynamic 3D features for MRI-CT head and neck image synthesis

Redha Touati, William Trung Le et Samuel Kadoury

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

Objective. Head and neck radiotherapy planning requires electron densities from different tissues for dose calculation. Dose calculation from imaging modalities such as MRI remains an unsolved problem since this imaging modality does not provide information about the density of electrons.

Approach. We propose a generative adversarial network (GAN) approach that synthesizes CT (sCT) images from T1-weighted MRI acquisitions in head and neck cancer patients. Our contribution is to exploit new features that are relevant for improving multimodal image synthesis, and thus improving the quality of the generated CT images. More precisely, we propose a Dual branch generator based on the U-Net architecture and on an augmented multi-planar branch. The augmented branch learns specific 3D dynamic features, which describe the dynamic image shape variations and are extracted from different view-points of the volumetric input MRI. The architecture of the proposed model relies on an end-to-end convolutional U-Net embedding network.

Results. The proposed model achieves a mean absolute error (MAE) of 18.76 ± 5.167 in the target Hounsfield unit (HU) space on sagittal head and neck patients, with a mean structural similarity (MSSIM) of 0.95 ± 0.09 and a Frechet inception distance (FID) of 145.60 ± 8.38. The model yields a MAE of 26.83 ± 8.27 to generate specific primary tumor regions on axial patient acquisitions, with a Dice score of 0.73 ± 0.06 and a FID distance equal to 122.58 ± 7.55. The improvement of our model over other state-of-the-art GAN approaches is of 3.8%, on a tumor test set. On both sagittal and axial acquisitions, the model yields the best peak signal-to-noise ratio of 27.89 ± 2.22 and to synthesize MRI from CT input.

Significance. The proposed model synthesizes both sagittal and axial CT tumor images, used for radiotherapy treatment planning in head and neck cancer cases. The performance analysis across different imaging metrics and under different evaluation strategies demonstrates the effectiveness of our dual CT synthesis model to produce high quality sCT images compared to other state-of-the-art approaches. Our model could improve clinical tumor analysis, in which a further clinical validation remains to be explored.

Mots clés

Renseignements supplémentaires: Groupe de recherche: MedICAL Laboratory
Sujet(s): 1900 Génie biomédical > 1900 Génie biomédical
1900 Génie biomédical > 1901 Technologie biomédicale
2500 Génie électrique et électronique > 2500 Génie électrique et électronique
Département: Département de génie informatique et génie logiciel
Centre de recherche: Autre
Organismes subventionnaires: NSERC / CRSNG, Fonds de recherche du Québec - Santé
Numéro de subvention: GPIN-2020-06558, 293740
URL de PolyPublie: https://publications.polymtl.ca/58932/
Titre de la revue: Physics in Medicine & Biology (vol. 69, no 15)
Maison d'édition: OIP Publishing
DOI: 10.1088/1361-6560/ad611a
URL officielle: https://doi.org/10.1088/1361-6560/ad611a
Date du dépôt: 29 juil. 2024 13:39
Dernière modification: 10 févr. 2025 19:47
Citer en APA 7: Touati, R., Le, W. T., & Kadoury, S. (2024). Multi-planar dual adversarial network based on dynamic 3D features for MRI-CT head and neck image synthesis. Physics in Medicine & Biology, 69(15), 155012 (36 pages). https://doi.org/10.1088/1361-6560/ad611a

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Loading...

Provenance des téléchargements

Loading...

Dimensions

Actions réservées au personnel

Afficher document Afficher document