<  Retour au portail Polytechnique Montréal

Applying recurrent neural networks and blocked cross-validation to model conventional drinking water treatment processes

Aleksandar Jakovljevic, Laurent Charlin et Benoit Barbeau

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

The jar test is the current standard method for predicting the performance of a conventional drinking water treatment (DWT) process and optimizing the coagulant dose. This test is time-consuming and requires human intervention, meaning it is infeasible for making continuous process predictions. As a potential alternative, we developed a machine learning (ML) model from historical DWT plant data that can operate continuously using real-time sensor data without human intervention for predicting clarified water turbidity 15 min in advance. We evaluated three types of models: multilayer perceptron (MLP), the long short-term memory (LSTM) recurrent neural network (RNN), and the gated recurrent unit (GRU) RNN. We also employed two training methodologies: the commonly used holdout method and the theoretically correct blocked cross-validation (BCV) method. We found that the RNN with GRU was the best model type overall and achieved a mean absolute error on an independent production set of as low as 0.044 NTU. We further found that models trained using BCV typically achieve errors equal to or lower than their counterparts trained using holdout. These results suggest that RNNs trained using BCV are superior for the development of ML models for DWT processes compared to those reported in earlier literature.

Mots clés

artificial intelligence; machine learning; turbidity prediction; coagulation optimization; multilayer perceptron; long short-term memory; gated recurrent unit

Sujet(s): 1500 Génie de l'environnement > 1500 Génie de l'environnement
1500 Génie de l'environnement > 1501 Qualité de l'eau, pollution
1500 Génie de l'environnement > 1502 Traitement des eaux usées
Département: Département des génies civil, géologique et des mines
Organismes subventionnaires: NSERC / CRSNG Canada Alliance
Numéro de subvention: ALLRP 560764-20
URL de PolyPublie: https://publications.polymtl.ca/58097/
Titre de la revue: Water (vol. 16, no 7)
Maison d'édition: MDPI
DOI: 10.3390/w16071042
URL officielle: https://doi.org/10.3390/w16071042
Date du dépôt: 30 avr. 2024 12:41
Dernière modification: 15 oct. 2024 10:35
Citer en APA 7: Jakovljevic, A., Charlin, L., & Barbeau, B. (2024). Applying recurrent neural networks and blocked cross-validation to model conventional drinking water treatment processes. Water, 16(7), 16071042 (14 pages). https://doi.org/10.3390/w16071042

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document