<  Retour au portail Polytechnique Montréal

Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering

Corey Ducharme, Bruno Agard et Martin Trépanier

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

In a collaborative supply chain arrangement like vendor-managed inventory, information on product demand at the point of sale is expected to be shared among members of the supply chain. However, in practice, obtaining such information can be costly, and some members may be unwilling or unable to provide the necessary access to the data. As such, large collaborative supply chains with multiple members may operate under a mixed-information scenario where point-of-sale demand information is not known for all customers. Other sources of demand information exist and are becoming more available along supply chains using Industry 4.0 technologies and can serve as a substitute, but the data may be noisy, distorted, and partially missing. Under mixed information, leveraging existing customers' point-of-sale demand to improve the intermittent demand forecast of customers with missing information has yet to be explored. We propose a supervised demand forecasting method that uses multivariate time series clustering to map multiple sources of demand data. Members with missing downstream demand data have their resulting demand forecast improved by averaging over customers with similar delivery patterns for their final demand forecast. Our results show up to a 10% accuracy improvement over traditional intermittent demand forecasting methods with missing information.

Mots clés

demand forecasting; Industry 4.0; intermittent demand; multivariate time series clustering;supervised learning; supply chain forecasting

Sujet(s): 1600 Génie industriel > 1600 Génie industriel
1600 Génie industriel > 1603 Logistique
1600 Génie industriel > 1606 Gestion de la production
Département: Département de mathématiques et de génie industriel
Centre de recherche: CIRRELT - Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport
LID - Laboratoire en intelligence des données
Autre
Organismes subventionnaires: NSERC / CRSNG
Numéro de subvention: RGPIN-2019-04723
URL de PolyPublie: https://publications.polymtl.ca/57794/
Titre de la revue: Journal of Forecasting (vol. 43, no 5)
Maison d'édition: Wiley
DOI: 10.1002/for.3095
URL officielle: https://doi.org/10.1002/for.3095
Date du dépôt: 28 mars 2024 15:20
Dernière modification: 15 oct. 2024 06:54
Citer en APA 7: Ducharme, C., Agard, B., & Trépanier, M. (2024). Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering. Journal of Forecasting, 43(5), 1661-1681. https://doi.org/10.1002/for.3095

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document