Corey Ducharme, Bruno Agard et Martin Trépanier
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (2MB) |
Abstract
In a collaborative supply chain arrangement like vendor-managed inventory, information on product demand at the point of sale is expected to be shared among members of the supply chain. However, in practice, obtaining such information can be costly, and some members may be unwilling or unable to provide the necessary access to the data. As such, large collaborative supply chains with multiple members may operate under a mixed-information scenario where point-of-sale demand information is not known for all customers. Other sources of demand information exist and are becoming more available along supply chains using Industry 4.0 technologies and can serve as a substitute, but the data may be noisy, distorted, and partially missing. Under mixed information, leveraging existing customers' point-of-sale demand to improve the intermittent demand forecast of customers with missing information has yet to be explored. We propose a supervised demand forecasting method that uses multivariate time series clustering to map multiple sources of demand data. Members with missing downstream demand data have their resulting demand forecast improved by averaging over customers with similar delivery patterns for their final demand forecast. Our results show up to a 10% accuracy improvement over traditional intermittent demand forecasting methods with missing information.
Mots clés
demand forecasting; Industry 4.0; intermittent demand; multivariate time series clustering;supervised learning; supply chain forecasting
Sujet(s): |
1600 Génie industriel > 1600 Génie industriel 1600 Génie industriel > 1603 Logistique 1600 Génie industriel > 1606 Gestion de la production |
---|---|
Département: | Département de mathématiques et de génie industriel |
Centre de recherche: |
CIRRELT - Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport LID - Laboratoire en intelligence des données Autre |
Organismes subventionnaires: | NSERC / CRSNG |
Numéro de subvention: | RGPIN-2019-04723 |
URL de PolyPublie: | https://publications.polymtl.ca/57794/ |
Titre de la revue: | Journal of Forecasting (vol. 43, no 5) |
Maison d'édition: | Wiley |
DOI: | 10.1002/for.3095 |
URL officielle: | https://doi.org/10.1002/for.3095 |
Date du dépôt: | 28 mars 2024 15:20 |
Dernière modification: | 15 oct. 2024 06:54 |
Citer en APA 7: | Ducharme, C., Agard, B., & Trépanier, M. (2024). Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering. Journal of Forecasting, 43(5), 1661-1681. https://doi.org/10.1002/for.3095 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions