Pavel Pleskunov, Mariia Protsak, Zdeněk Krtouš, Tereza Košutová, Marco Tosca, Kateryna Biliak, Veronika Cervenková, Daniil Nikitin, Jan Hanuš, Miroslav Cieslar, Ivan Gordeev, Milan Dopita, Michael Vorochta, Jaroslav Kousal, Ludvik Martinu and Andrei Choukourov
Article (2024)
Open Acess document in PolyPublie and at official publisher |
|
Open Access to the full text of this document Published Version Terms of Use: Creative Commons Attribution Non-commercial Download (3MB) |
Abstract
High-temperature plasmonics deals with optically active nanostructures that can withstand high temperatures. A conventional approach relying on standalone noble metal nanoparticles fails to deliver refractory plasmonic nanomaterials, and an alternative route envisions metal nitrides. The main challenge remains the development of advanced synthesis techniques and the insight into thermal stability under real-life application conditions. Here, hafnium nitride nanoparticles (HfN NPs) can be produced by gas aggregation using reactive magnetron sputtering, a technique with a small environmental footprint are shown. As-deposited NPs are of 10 nm mean size and consist of stoichiometric, crystalline fcc HfN. They are characterized by optical absorption below 500 nm caused by interband transitions and in the red/near-infrared (NIR) region due to intraband transitions and localized surface plasmon resonance (LSPR). The optical response can be engineered by tuning the NP composition as predicted by finite-difference time-domain (FDTD) calculations. Going beyond the state-of-the-art, the HfN NP thermal stability is focued under ultrahigh vacuum (UHV) and in air. During UHV annealing to 850 °C, the NPs retain their morphology, chemical and optical properties, which makes them attractive in space mission and other applications. During air annealing to 800 °C, HfN NPs remain stable until 250 °C, which sets a limit for air-mediated use.
Uncontrolled Keywords
hafnium nitride; magnetron sputtering; nanoparticles; refractory plasmonics; thermal stability
Subjects: | 3100 Physics > 3100 Physics |
---|---|
Department: | Department of Engineering Physics |
Funders: | Czech Science Foundation, Czech Republic - Ministry of Education, Youth and Sports |
Grant number: | GACR 21–12828S |
PolyPublie URL: | https://publications.polymtl.ca/57783/ |
Journal Title: | Advanced Optical Materials (vol. 12, no. 13) |
Publisher: | John Wiley and Sons |
DOI: | 10.1002/adom.202302715 |
Official URL: | https://doi.org/10.1002/adom.202302715 |
Date Deposited: | 28 Mar 2024 15:20 |
Last Modified: | 27 Sep 2024 20:04 |
Cite in APA 7: | Pleskunov, P., Protsak, M., Krtouš, Z., Košutová, T., Tosca, M., Biliak, K., Cervenková, V., Nikitin, D., Hanuš, J., Cieslar, M., Gordeev, I., Dopita, M., Vorochta, M., Kousal, J., Martinu, L., & Choukourov, A. (2024). Refractory plasmonics of reactively sputtered hafnium nitride nanoparticles : pushing limits. Advanced Optical Materials, 12(13), 202302715 (13 pages). https://doi.org/10.1002/adom.202302715 |
---|---|
Statistics
Total downloads
Downloads per month in the last year
Origin of downloads
Dimensions