Pavel Pleskunov, Mariia Protsak, Zdeněk Krtouš, Tereza Košutová, Marco Tosca, Kateryna Biliak, Veronika Cervenková, Daniil Nikitin, Jan Hanuš, Miroslav Cieslar, Ivan Gordeev, Milan Dopita, Michael Vorochta, Jaroslav Kousal, Ludvik Martinu et Andrei Choukourov
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale (CC BY-NC) Télécharger (3MB) |
Abstract
High-temperature plasmonics deals with optically active nanostructures that can withstand high temperatures. A conventional approach relying on standalone noble metal nanoparticles fails to deliver refractory plasmonic nanomaterials, and an alternative route envisions metal nitrides. The main challenge remains the development of advanced synthesis techniques and the insight into thermal stability under real-life application conditions. Here, hafnium nitride nanoparticles (HfN NPs) can be produced by gas aggregation using reactive magnetron sputtering, a technique with a small environmental footprint are shown. As-deposited NPs are of 10 nm mean size and consist of stoichiometric, crystalline fcc HfN. They are characterized by optical absorption below 500 nm caused by interband transitions and in the red/near-infrared (NIR) region due to intraband transitions and localized surface plasmon resonance (LSPR). The optical response can be engineered by tuning the NP composition as predicted by finite-difference time-domain (FDTD) calculations. Going beyond the state-of-the-art, the HfN NP thermal stability is focued under ultrahigh vacuum (UHV) and in air. During UHV annealing to 850 °C, the NPs retain their morphology, chemical and optical properties, which makes them attractive in space mission and other applications. During air annealing to 800 °C, HfN NPs remain stable until 250 °C, which sets a limit for air-mediated use.
Mots clés
hafnium nitride; magnetron sputtering; nanoparticles; refractory plasmonics; thermal stability
Sujet(s): | 3100 Physique > 3100 Physique |
---|---|
Département: | Département de génie physique |
Organismes subventionnaires: | Czech Science Foundation, Czech Republic - Ministry of Education, Youth and Sports |
Numéro de subvention: | GACR 21–12828S |
URL de PolyPublie: | https://publications.polymtl.ca/57783/ |
Titre de la revue: | Advanced Optical Materials (vol. 12, no 13) |
Maison d'édition: | John Wiley and Sons |
DOI: | 10.1002/adom.202302715 |
URL officielle: | https://doi.org/10.1002/adom.202302715 |
Date du dépôt: | 28 mars 2024 15:20 |
Dernière modification: | 27 sept. 2024 20:04 |
Citer en APA 7: | Pleskunov, P., Protsak, M., Krtouš, Z., Košutová, T., Tosca, M., Biliak, K., Cervenková, V., Nikitin, D., Hanuš, J., Cieslar, M., Gordeev, I., Dopita, M., Vorochta, M., Kousal, J., Martinu, L., & Choukourov, A. (2024). Refractory plasmonics of reactively sputtered hafnium nitride nanoparticles : pushing limits. Advanced Optical Materials, 12(13), 202302715 (13 pages). https://doi.org/10.1002/adom.202302715 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions