Valérie Bibeau, Daria Camilla Boffito et Bruno Blais
Article de revue (2024)
|
|
Accès restreint: Personnel autorisé jusqu'au 22 décembre 2025 Version finale avant publication Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Demander document |
Abstract
Microwaves are a process intensification (PI) method to deliver energy to reactive systems. Microwaves act directly on molecules’ dipolar moment, generating volumetric heating that allows temperature to rise rapidly, which directly impacts the overall rate of a reaction. Because reaction rates adhere to non-linear rate laws, predicting them is challenging. We use a Physics-informed Neural Network (PINN), a physics-driven model, to identify the reaction kinetics of a biodiesel production process. PINNs perform a regression on very few experimental data points and try to fit the physics at hand. We use a microwave reactor with a constant power input to perform the transesterification reaction, measure the infrared temperature and analyze the concentration of glycerides using GC-FID at different reaction times. We train the PINN to predict the reaction rates with respect to the Arrhenius equation. Results show that the PINN successfully identifies the rate constants, including their temperature dependency. Furthermore, the PINN can extrapolate its predictions to other power inputs without ever seeing the concentration data, generating a digital twin of the microwave-assisted reaction.
Mots clés
| Département: | Département de génie chimique |
|---|---|
| Centre de recherche: |
URPEI - Unité de recherche en procédés d'écoulements industriels EPIC - Laboratoire d'électrification des procédés intensifiés et catalyse |
| Organismes subventionnaires: | NSERC |
| Numéro de subvention: | RGPIN-2020-04510, CRC-2022-00340 |
| URL de PolyPublie: | https://publications.polymtl.ca/57565/ |
| Titre de la revue: | Chemical Engineering and Processing-Process Intensification (vol. 196) |
| Maison d'édition: | Elsevier science sa |
| DOI: | 10.1016/j.cep.2023.109652 |
| URL officielle: | https://doi.org/10.1016/j.cep.2023.109652 |
| Date du dépôt: | 28 févr. 2024 14:05 |
| Dernière modification: | 06 nov. 2025 07:28 |
| Citer en APA 7: | Bibeau, V., Boffito, D. C., & Blais, B. (2024). Physics-informed Neural Network to predict kinetics of biodiesel production in microwave reactors. Chemical Engineering and Processing-Process Intensification, 196, 109652 (9 pages). https://doi.org/10.1016/j.cep.2023.109652 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
