<  Retour au portail Polytechnique Montréal

Physics-informed Neural Network to predict kinetics of biodiesel production in microwave reactors

Valérie Bibeau, Daria Camilla Boffito et Bruno Blais

Article de revue (2024)

[img] Accès restreint: Personnel autorisé jusqu'au 22 décembre 2025
Version finale avant publication
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Demander document
Afficher le résumé
Cacher le résumé

Abstract

Microwaves are a process intensification (PI) method to deliver energy to reactive systems. Microwaves act directly on molecules’ dipolar moment, generating volumetric heating that allows temperature to rise rapidly, which directly impacts the overall rate of a reaction. Because reaction rates adhere to non-linear rate laws, predicting them is challenging. We use a Physics-informed Neural Network (PINN), a physics-driven model, to identify the reaction kinetics of a biodiesel production process. PINNs perform a regression on very few experimental data points and try to fit the physics at hand. We use a microwave reactor with a constant power input to perform the transesterification reaction, measure the infrared temperature and analyze the concentration of glycerides using GC-FID at different reaction times. We train the PINN to predict the reaction rates with respect to the Arrhenius equation. Results show that the PINN successfully identifies the rate constants, including their temperature dependency. Furthermore, the PINN can extrapolate its predictions to other power inputs without ever seeing the concentration data, generating a digital twin of the microwave-assisted reaction.

Mots clés

Département: Département de génie chimique
Centre de recherche: URPEI - Unité de recherche en procédés d'écoulements industriels
EPIC - Laboratoire d'électrification des procédés intensifiés et catalyse
Organismes subventionnaires: NSERC
Numéro de subvention: RGPIN-2020-04510, CRC-2022-00340
URL de PolyPublie: https://publications.polymtl.ca/57565/
Titre de la revue: Chemical Engineering and Processing-Process Intensification (vol. 196)
Maison d'édition: Elsevier science sa
DOI: 10.1016/j.cep.2023.109652
URL officielle: https://doi.org/10.1016/j.cep.2023.109652
Date du dépôt: 28 févr. 2024 14:05
Dernière modification: 06 nov. 2025 07:28
Citer en APA 7: Bibeau, V., Boffito, D. C., & Blais, B. (2024). Physics-informed Neural Network to predict kinetics of biodiesel production in microwave reactors. Chemical Engineering and Processing-Process Intensification, 196, 109652 (9 pages). https://doi.org/10.1016/j.cep.2023.109652

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document