Mario Passalacqua, Garrick Cabour, Robert Pellerin, Pierre-Majorique Léger et Philippe Doyon-Poulin
Chapitre de livre (2024)
Accès restreint: Personnel autorisé jusqu'au 22 mars 2025 Version finale avant publication Conditions d'utilisation: Tous droits réservés Demander document |
Abstract
Integrating artificial intelligence (AI) in the workplace has created many challenges and opportunities for human work. Increased human–automation collaboration is expected on physical or cognitive tasks. Several disciplines have echoed the fact that these new technologies automate part of the work steps in collaboration with human operators rather than replacing entire professions, such as Information Technologies (Seeber et al., 2020), economics (Frey & Osborne, 2017), work psychology (Parker & Grote, 2022) and human factors & ergonomics (Mueller et al., 2021). The area of Industry 4.0 (I4.0) is at the forefront of the digitalization of human work wherein AI plays a central role. I4.0 intends to increase production system capabilities in terms of productivity, repeatability, flexibility, real-time monitoring, and process standardization (Zheng et al., 2021). This is done by integrating a set of digital, robotic, and automated technologies into production (Kadir et al., 2019) and combining different digital solutions together (Zheng et al., 2021). The latest technological advances in I4.0 have increased the capabilities of machines in performing complex, cognitive tasks (Xiong et al., 2022). However, the development of I4.0 technologies follows a technocentric approach (Sony & Naik, 2020). Focusing on technology development first (Carayannis et al., 2022). Bibliometric analyses quantified the technocentric directions of I4.0. A recent literature review noted that out of a sample of 4885 studies with a search strategy that included the terms Industry 4.0 and Human Factors, 4849 studies focused on technical factors and 36 on human factors (Passalacqua et al., 2022). This top-down approach often neglects the contextual factors that govern work systems and their potential integration into situated operational practices (Loup-Escande, 2022).
Mots clés
computer science; engineering & technology
Sujet(s): | 2800 Intelligence artificielle > 2800 Intelligence artificielle (Vision artificielle, voir 2603) |
---|---|
Département: | Département de mathématiques et de génie industriel |
URL de PolyPublie: | https://publications.polymtl.ca/57479/ |
Maison d'édition: | CRC Press |
DOI: | 10.1201/9781003320791-27 |
URL officielle: | https://doi.org/10.1201/9781003320791-27 |
Date du dépôt: | 28 févr. 2024 14:05 |
Dernière modification: | 27 sept. 2024 04:10 |
Citer en APA 7: | Passalacqua, M., Cabour, G., Pellerin, R., Léger, P.-M., & Doyon-Poulin, P. (2024). Human-centered AI for industry 5.0 (HUMAI5.0) : design framework and case studies. Dans Human-centered AI : a multidisciplinary perspective for policy-makers, auditors and users (p. 260-274). https://doi.org/10.1201/9781003320791-27 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions