<  Retour au portail Polytechnique Montréal

Bilevel optimization for feature selection in the data-driven newsvendor problem

Breno Serrano, Stefan Minner, Maximilian Schiffer et Thibaut Vidal

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

We study the feature-based newsvendor problem, in which a decision-maker has access to historical data consisting of demand observations and exogenous features. In this setting, we investigate feature selection, aiming to derive sparse, explainable models with improved out-of-sample performance. Up to now, state-of-the-art methods utilize regularization, which penalizes the number of selected features or the norm of the solution vector. As an alternative, we introduce a novel bilevel programming formulation. The upper-level problem selects a subset of features that minimizes an estimate of the out-of-sample cost of ordering decisions based on a held-out validation set. The lower-level problem learns the optimal coefficients of the decision function on a training set, using only the features selected by the upper-level. We present a mixed integer linear program reformulation for the bilevel program, which can be solved to optimality with standard optimization solvers. Our computational experiments show that the method accurately recovers ground-truth features already for instances with a sample size of a few hundred observations. In contrast, regularization- based techniques often fail at feature recovery or require thousands of observations to obtain similar accuracy. Regarding out-of-sample generalization, we achieve improved or comparable cost performance.

Mots clés

Bilevel optimization; Newsvendor; Mixed integer programming.

Sujet(s): 2950 Mathématiques appliquées > 2950 Mathématiques appliquées
Département: Département de mathématiques et de génie industriel
Organismes subventionnaires: Deutsche Forschungsgemeinschaft
Numéro de subvention: AdONE, GRK2201/277991500
URL de PolyPublie: https://publications.polymtl.ca/57338/
Titre de la revue: European Journal of Operational Research (vol. 315, no 2)
Maison d'édition: Elsevier BV
DOI: 10.1016/j.ejor.2024.01.025
URL officielle: https://doi.org/10.1016/j.ejor.2024.01.025
Date du dépôt: 25 mars 2024 14:33
Dernière modification: 29 sept. 2024 23:32
Citer en APA 7: Serrano, B., Minner, S., Schiffer, M., & Vidal, T. (2024). Bilevel optimization for feature selection in the data-driven newsvendor problem. European Journal of Operational Research, 315(2), 703-714. https://doi.org/10.1016/j.ejor.2024.01.025

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document