Breno Serrano, Stefan Minner, Maximilian Schiffer et Thibaut Vidal
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (1MB) |
Abstract
We study the feature-based newsvendor problem, in which a decision-maker has access to historical data consisting of demand observations and exogenous features. In this setting, we investigate feature selection, aiming to derive sparse, explainable models with improved out-of-sample performance. Up to now, state-of-the-art methods utilize regularization, which penalizes the number of selected features or the norm of the solution vector. As an alternative, we introduce a novel bilevel programming formulation. The upper-level problem selects a subset of features that minimizes an estimate of the out-of-sample cost of ordering decisions based on a held-out validation set. The lower-level problem learns the optimal coefficients of the decision function on a training set, using only the features selected by the upper-level. We present a mixed integer linear program reformulation for the bilevel program, which can be solved to optimality with standard optimization solvers. Our computational experiments show that the method accurately recovers ground-truth features already for instances with a sample size of a few hundred observations. In contrast, regularization- based techniques often fail at feature recovery or require thousands of observations to obtain similar accuracy. Regarding out-of-sample generalization, we achieve improved or comparable cost performance.
Mots clés
Bilevel optimization; Newsvendor; Mixed integer programming.
Sujet(s): | 2950 Mathématiques appliquées > 2950 Mathématiques appliquées |
---|---|
Département: | Département de mathématiques et de génie industriel |
Organismes subventionnaires: | Deutsche Forschungsgemeinschaft |
Numéro de subvention: | AdONE, GRK2201/277991500 |
URL de PolyPublie: | https://publications.polymtl.ca/57338/ |
Titre de la revue: | European Journal of Operational Research (vol. 315, no 2) |
Maison d'édition: | Elsevier BV |
DOI: | 10.1016/j.ejor.2024.01.025 |
URL officielle: | https://doi.org/10.1016/j.ejor.2024.01.025 |
Date du dépôt: | 25 mars 2024 14:33 |
Dernière modification: | 29 sept. 2024 23:32 |
Citer en APA 7: | Serrano, B., Minner, S., Schiffer, M., & Vidal, T. (2024). Bilevel optimization for feature selection in the data-driven newsvendor problem. European Journal of Operational Research, 315(2), 703-714. https://doi.org/10.1016/j.ejor.2024.01.025 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions