
Titre:
Title:

Bilevel optimization for feature selection in the data-driven 
newsvendor problem

Auteurs:
Authors:

Breno Serrano, Stefan Minner, Maximilian Schiffer, & Thibaut Vidal 

Date: 2024

Type: Article de revue / Article

Référence:
Citation:

Serrano, B., Minner, S., Schiffer, M., & Vidal, T. (2024). Bilevel optimization for 
feature selection in the data-driven newsvendor problem. European Journal of 
Operational Research, 315(2), 703-714. https://doi.org/10.1016/j.ejor.2024.01.025

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/57338/

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use: CC BY-NC-ND 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

European Journal of Operational Research (vol. 315, no. 2) 

Maison d’édition:
Publisher:

Elsevier BV

URL officiel:
Official URL:

https://doi.org/10.1016/j.ejor.2024.01.025

Mention légale:
Legal notice:

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1016/j.ejor.2024.01.025
https://publications.polymtl.ca/57338/
https://doi.org/10.1016/j.ejor.2024.01.025


European Journal of Operational Research 315 (2024) 703–714

A
0
n

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/eor

Analytics, Computational Intelligence and Information Management

Bilevel optimization for feature selection in the data-driven newsvendor
problem
Breno Serrano a,∗, Stefan Minner a,b, Maximilian Schiffer a,b, Thibaut Vidal c,d

a School of Management, Technical University of Munich, Germany
b Munich Data Science Institute, Technical University of Munich, Germany
c Department of Mathematical and Industrial Engineering, Polytechnique Montréal, Canada
d Department of Computer Science, Pontifical Catholic University of Rio de Janeiro, Brazil

A R T I C L E I N F O

Keywords:
Feature selection
Bilevel optimization
Newsvendor
Mixed integer programming

A B S T R A C T

We study the feature-based newsvendor problem, in which a decision-maker has access to historical data
consisting of demand observations and exogenous features. In this setting, we investigate feature selection,
aiming to derive sparse, explainable models with improved out-of-sample performance. Up to now, state-
of-the-art methods utilize regularization, which penalizes the number of selected features or the norm of
the solution vector. As an alternative, we introduce a novel bilevel programming formulation. The upper-
level problem selects a subset of features that minimizes an estimate of the out-of-sample cost of ordering
decisions based on a held-out validation set. The lower-level problem learns the optimal coefficients of the
decision function on a training set, using only the features selected by the upper-level. We present a mixed
integer linear program reformulation for the bilevel program, which can be solved to optimality with standard
optimization solvers. Our computational experiments show that the method accurately recovers ground-truth
features already for instances with a sample size of a few hundred observations. In contrast, regularization-
based techniques often fail at feature recovery or require thousands of observations to obtain similar accuracy.
Regarding out-of-sample generalization, we achieve improved or comparable cost performance.
1. Introduction

The newsvendor problem and its variants have served as fundamen-
tal building blocks for models in inventory and supply chain manage-
ment. In the classical newsvendor problem, a decision-maker optimizes
the inventory of a perishable product that has a stochastic demand with
a known distribution. However, having complete knowledge of the de-
mand distribution is a strong assumption that does not hold in practice:
often, the only information available is a limited set of historical data.
Against this background, data-driven approaches became popular and
strive to use past demand data to inform the newsvendor’s ordering
decisions.

In this context, we study the feature-based newsvendor problem
(cf. Ban and Rudin 2019, Beutel and Minner 2012) in which the
decision-maker has access not only to historical demand observations
but also to a set of feature variables – often referred to as contextual
information or covariates – that may provide partial information about
future realizations of the uncertain demand. For example, consider
a retail company that sells products in stores at different locations
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E-mail addresses: breno.serrano@tum.de (B. Serrano), stefan.minner@tum.de (S. Minner), schiffer@tum.de (M. Schiffer), thibaut.vidal@polymtl.ca

(T. Vidal).

and with different assortments, e.g., newspaper stands, a chain of
restaurants, or fashion retail stores. Then, features could include infor-
mation about store location, product characteristics, weather forecasts,
e.g., temperature and expected precipitation, day of the week, seasonal
trends, social media events, competitor activity, epidemic outbreaks,
supplier promotions, regulatory changes, and information about holi-
days or special events close to the store location. In a broader sense,
feature variables can include any information that is available to the
decision-maker before or at the time instant when ordering decisions
are made, e.g., past sales of related products to capture correlated
demands, or forecasts based on human expert knowledge. In the con-
text of a car retailer, Tian and Zhang (2023) applied a feature-based
newsvendor model where features included historical sales data, textual
online reviews, search traffic data, and macroeconomic indicator data.
Moreover, the newsvendor model has applications beyond inventory
management, such as finding the optimal staffing level of nurses for
hospital emergency rooms (Ban & Rudin, 2019), where the uncertain
vailable online 24 January 2024
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demand corresponds to the number of arriving patients and features
include the day of the week and time of the day, among others.

Companies nowadays have large amounts of data that are used to
train machine learning models with the aim of improving operational
decisions. In practice, such models often suffer from overfitting to
the training data, or lack explainability, which is crucial, e.g., when
dealing with high-stakes decisions. In this setting, selecting a subset
of the available features can lead to sparser, more explainable models
with improved out-of-sample performance. Against this background, we
investigate the challenge of feature selection (cf. Kuhn and Johnson
2019, Molina et al. 2002): given a data set with a possibly large set of
feature variables, we aim to learn a linear decision function for the
feature-based newsvendor that can generalize to out-of-sample data,
utilizing only relevant features.

The goal of this paper is to propose an approach to feature selection
based on bilevel optimization. Accordingly, we learn a linear decision
function for the feature-based newsvendor based on a training data set,
where the set of features available for training is restricted to a given
subset of all features. The problem of learning a linear decision function
corresponds to the lower-level problem of our bilevel optimization for-
mulation, while the problem of selecting a subset of available features
corresponds to the upper-level problem. In the upper-level problem, we
search for a subset of features that minimizes the out-of-sample cost
measured on a held-out data set, which we denote as the validation data
set. In the remainder of this section, we first review related literature
before we detail our contribution and describe the organization of this
paper.

1.1. Related works

Our work relates to the fields of data-driven optimization for the
newsvendor problem, and more broadly to prescriptive analytics, ma-
chine learning, and bilevel programming. We briefly review the most
related papers in the following.

Newsvendor problem. Research on the newsvendor problem often
assumed a decision-maker with full knowledge about the demand dis-
tribution, and considered various settings, e.g., with different objectives
or utility functions (Chen et al., 2007; Wang & Webster, 2009), pricing
policies (Petruzzi & Dada, 1999), and multi-product or multi-period
settings (Kogan & Lou, 2003; Lau & Lau, 1996). For general surveys
on newsvendor models and extensions, we refer the interested reader
to Khouja (1999), Qin et al. (2011) and Choi (2012). In practice,
the decision-maker often has only a finite set of demand observations
and cannot estimate the true underlying distribution, which motivated
works on the distribution-free newsvendor problem. In this context, the
seminal work of Scarf (1958) derived the optimal order quantity that
maximizes profit against the worst-case demand distribution, assuming
that only the mean and variance of demand are known. For a review
on the distribution-free newsvendor and extensions thereof, we refer
to Gallego and Moon (1993), Moon and Gallego (1994), and Yue
et al. (2006). Later works on this problem variant assumed additional
information about the demand distribution, such as percentiles (Gallego
et al., 2001), symmetry, and unimodality (Perakis & Roels, 2008).

In contrast to working with moments or distributional parameters,
data-driven approaches build directly upon a sample of available data
that reflects realizations of the underlying uncertainty. In this con-
text, a common solution approach is sample average approximation
(SAA) (cf. Kleywegt et al. 2002, Shapiro 2003). Levi et al. (2007)
applied SAA for the single-period featureless newsvendor problem and
established upper bounds on the number of samples required to achieve
a specified relative error. In this course, Levi et al. (2015), Che-
ung and Simchi-Levi (2019), and Besbes and Mouchtaki (2023) fur-
ther improved upon previous SAA bounds. Besbes and Muharremoglu
(2013), Sachs and Minner (2014), and Ban (2020) studied the impact
of demand censoring, i.e., a problem variant in which only sales obser-
704

vations are available but excess demand is not recorded. They derived
upper and lower bounds on the difference between the cost achieved by
a policy and the optimal cost with knowledge of the demand distribu-
tion. Adopting a robust optimization perspective, Bertsimas and Thiele
(2005) proposed a data-driven approach that can be reformulated as a
linear program (LP) and trades off higher profits for a decrease in the
downside risk. Robust optimization approaches were also investigated
by Bertsimas and Thiele (2006) and See and Sim (2010) for a multi-
period inventory problem. Finally, many authors applied data-driven
distributionally robust approaches for dealing with uncertainty in the
context of multi-item newsvendor problems (see, e.g., Ben-Tal et al.
2013, Bertsimas et al. 2018, Hanasusanto et al. 2015, Wang et al.
2016).

Despite numerous extensions to the newsvendor problem, most
data-driven approaches consider only demand data but no feature
variables to be available. However, ignoring the presence of features
can lead to inconsistent decisions as shown in Ban and Rudin (2019).
In the following, we review papers that also consider the presence of
features in the context of data-driven optimization.

Data-driven optimization. Beyond the newsvendor problem, some re-
cent works have studied the integration of estimation and optimization.
In particular, Bertsimas and Kallus (2020) proposed a framework for
feature-based stochastic optimization problems based on a weighted
SAA approach, in which the weights are generated by machine learning
methods, such as 𝑘-nearest neighbors regression, local linear regression,
classification and regression trees, or random forests. Elmachtoub and
Grigas (2021) focused on problems with a linear objective and used
features to learn a prediction model for the stochastic cost vector. They
proposed a modified loss function that directly leverages the structure
of the optimization problem instead of minimizing a standard predic-
tion error, such as the least squares loss. Despite this modification, their
approach still handles prediction and optimization as separate tasks and
does not integrate them into a one-step process. Mandi et al. (2020)
further adapted the approach from Elmachtoub and Grigas (2021) to
solve some hard combinatorial problems, e.g., by proposing tailored
warm-starting techniques.

In the context of the feature-based newsvendor, Beutel and Minner
(2012) integrated estimation and optimization by learning a decision
function that predicts ordering decisions directly from features, op-
posed to first estimating the demand and then optimizing the inventory
level. The proposed model formulation is an LP that solves an Empirical
Risk Minimization (ERM) problem over a training data set. Oroojlooyja-
did et al. (2020) and Zhang and Gao (2017) applied neural networks to
the newsvendor problem, proposing specific loss functions that consider
the impact of inventory shortage and holding costs. Huber et al. (2019)
provided an empirical evaluation of different data-driven approaches
for the feature-based newsvendor and compared their performance
against model-based approaches, which model the uncertainty through
a demand distribution assumption. Their experiments on real-world
data showed that data-driven approaches outperform their model-based
counterparts in most cases. Further, Mandl and Minner (2023) studied a
multi-period commodity procurement problem under price uncertainty
and proposed a data-driven model to derive optimal purchase policies
based on economic indicators.

Regarding feature selection, Ban and Rudin (2019) extended the
model of Beutel and Minner (2012) by including a regularization
term to the objective function, which penalizes the complexity of the
solution, thereby favoring the selection of fewer features. However,
feature selection is not the main focus of Ban and Rudin (2019), and an
open challenge remains regarding the specification of the regularization
parameter, for which heuristics are often employed. In this work,
we avoid regularization by formalizing the task of feature selection
as a bilevel optimization problem for which we provide a tractable
single-level reformulation.

Bilevel optimization in machine learning. Bilevel optimization has
been applied in the field of machine learning for hyperparameter opti-

mization (Bennett et al., 2006, 2008; Franceschi et al., 2018; Mackay
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et al., 2019) and feature selection (Agor & Özaltın, 2019). In par-
ticular, Bennett et al. (2006, 2008) proposed a bilevel program for
optimizing the hyperparameters of a support vector regression model.
They reformulated the model into a single-level nonlinear program
and employed off-the-shelf solvers based on Sequential Quadratic Pro-
gramming (Fletcher & Leyffer, 2002). Franceschi et al. (2018) also
proposed a bilevel programming approach for hyperparameter opti-
mization, highlighting connections to meta-learning, and solved it with
a gradient-based method.

Only Agor and Özaltın (2019) addressed feature selection as a
bilevel optimization problem in the context of classification models,
e.g., Lasso-based logistic regression and support vector machines. How-
ever, their bilevel formulations do not apply to our problem setting,
since the feature-based newsvendor combines aspects from supervised
learning, i.e., regression, and data-driven optimization. Moreover, the
solution method of Agor and Özaltın (2019) consists of a tailored
genetic algorithm, which does not provide solution-quality guarantees.
In contrast, our methodology is based on mixed integer linear pro-
gramming (MILP) and allows to optimally solve the proposed bilevel
programming formulations.

Mixed integer optimization for feature selection. The problem of
feature selection, also referred to as the best subset selection problem,
has been extensively studied in machine learning research. For an intro-
duction to different methods, we refer to Molina et al. (2002), Guyon
and Elisseeff (2003), and Kuhn and Johnson (2019). Recent works pro-
posed mixed integer programming (MIP) formulations for feature selec-
tion in the context of multiple linear regression (Takano & Miyashiro,
2020), classification with support vector machines (Maldonado et al.,
2014), and cluster analysis (Benati & García, 2014), among others.
In particular, Maldonado et al. (2014) proposed a MILP formulation
that simultaneously learns the classifier and selects relevant features
by limiting the number of selected features using a budget constraint.

For regression models, Miyashiro and Takano (2015) proposed a
mixed integer second-order cone programming formulation for fea-
ture selection with respect to various statistical criteria. Gómez and
Prokopyev (2021) showed that a formulation based on mixed integer
fractional programming has a stronger convex relaxation
than (Miyashiro & Takano, 2015). Bertsimas et al. (2016) considered a
MIP formulation for linear regression under a cardinality constraint on
the subset of selected features, and proposed discrete first-order algo-
rithms and tailored warm-starting techniques. Park and Klabjan (2020)
solved a mixed integer quadratically constrained program for feature
selection with respect to criteria such as the mean squared error and
the mean absolute error. Kimura and Waki (2018) proposed a mixed
integer nonlinear program and a tailored branch-and-bound algorithm
for minimizing the Akaike information criterion (AIC) criterion. How-
ever, many statistical criteria designed for linear regression are not
meaningful in the context of feature-based stochastic optimization, as
we are interested in the impact of feature selection in the downstream
newsvendor problem. Therefore, we adopt a cross-validation criterion
that evaluates the out-of-sample cost of a selection of features on a
held-out validation data set, which requires only mild assumptions in
contrast to other information criteria (cf. Takano and Miyashiro 2020).

Related work by Takano and Miyashiro (2020) proposed a bilevel
optimization formulation for feature selection based on a
cross-validation criterion. They focused on multiple linear regression
and proposed a single-level reformulation based on mixed integer
quadratic programming (MIQP). Due to its computational complexity,
they cannot optimally solve the MIQP in most cases. A key difference to
our work is that they rely on regularization in the lower-level problem
and require a regularization parameter value to be given a priori.
In the experiments, they employ a grid search method to tune this
parameter and leave it for future research to devise a formulation that
simultaneously selects features and the optimal regularization value. As
705

we discuss later, the problem of hyperparameter tuning itself can be d
cast as a bilevel optimization problem for which currently no tractable
reformulation exists. In contrast, we propose a bilevel program for
feature selection which does not require regularization and has a MILP
single-level reformulation.

1.2. Contribution

We close the research gaps outlined above by proposing a novel
bilevel optimization model that directly incorporates feature selection
into solving the data-driven newsvendor problem. Specifically, our con-
tribution is fourfold. First, we introduce a bilevel program designed for
feature selection, which we denote the Bilevel Feature Selection (BFS)
model. In contrast to regularization-based methods, which penalize the
norm of the solution vector, BFS captures the more intuitive notion of
selecting a subset of features that minimizes an estimate of the out-
of-sample cost, measured on a held-out validation set. We reformulate
the bilevel program into a single-level optimization problem, which
we solve to optimality with off-the-shelf optimization solvers. Second,
we extend the BFS model to accommodate cross-validation strategies,
which further improves its solution quality. Third, to illustrate the
drawback of regularization-based methods for feature selection, we
present a bilevel program, which we refer to as Bilevel Hyperparameter
Optimization (BHO), that searches for the optimal hyperparameter for
the regularized ERM model (cf. Ban and Rudin 2019). BHO formally
describes the optimization model that established hyperparameter op-
timization methods implicitly solve by means of heuristics, such as
grid search, random search, or Bayesian optimization. Fourth, we con-
duct extensive numerical experiments, using synthetic instances with
correlated features. We compare the proposed BFS models against
regularization-based methods in terms of out-of-sample performance
and ground-truth feature recovery. We further compare the methods’
behavior under demand misspecification, assuming a nonlinear demand
model. Our results show that the proposed BFS approach consistently
achieves higher accuracy in feature recovery. In most cases, we also
observe an improvement in out-of-sample cost performance, i.e., a
decrease in test cost.

1.3. Organization

The remainder of this paper is structured as follows. In Section 2,
we review the model formulations for the classical newsvendor and the
feature-based newsvendor problem. Section 3 presents the BHO and
the BFS models, and consecutively extends the BFS to cross-validation.
Section 4 describes our experimental design, and Section 5 presents
the results comparing the proposed method against state-of-the-art
techniques based on regularization. Section 6 concludes this paper and
gives an outlook on future research.

2. Fundamentals

In the classical newsvendor problem, a risk-neutral decision-maker
sets the order quantity of a product before observing its uncertain
demand. Here, the objective is to minimize the expected cost:

min
𝑞≥0

E [𝐶(𝑞; 𝑑)] , (1)

here 𝑞 is the order quantity, 𝑑 ∼  is the random variable represent-
ng the uncertain demand,

(𝑞; 𝑑) ∶= 𝑏(𝑑 − 𝑞)+ + ℎ(𝑞 − 𝑑)+ (2)

s the cost of ordering 𝑞 units and observing demand 𝑑, based on
he per unit shortage cost 𝑏 for lost profits and unit holding cost ℎ,
orresponding to the procurement cost of unsold products discounted
y their unit salvage value. If the demand distribution is known, then
he optimal decision 𝑞∗ is given at the 𝑏∕(𝑏+ℎ) quantile of its cumulative

istribution function.
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In practice, the demand distribution is often not known. We consider
the feature-based newsvendor problem, in which the decision-maker
has access to historical demand data and contextual information given
by a set of feature variables 𝐱 ∈ R𝑚+1 (cf. Beutel and Minner 2012).
Here, the uncertain demand 𝑑 and feature variables 𝐱 follow an (un-
known) joint probability distribution (𝐱, 𝑑) ∼  × = . The decision-
maker’s objective is to minimize the expected cost conditioned on the
observed features:

min
𝑞≥0

E [𝐶(𝑞(𝐱); 𝑑(𝐱))|𝐱] . (3)

One approach to solve the feature-based newsvendor is to separate
the estimation and optimization problems, i.e., one first estimates
the conditional demand distribution from historical data and then
optimizes the order quantity based on new feature observations. One
drawback of this approach is that the first step’s estimation problem
does not account for the asymmetry in the newsvendor cost func-
tion, related to under- and over-predicting demand. To address this
issue, Beutel and Minner (2012) proposed to integrate estimation and
optimization into a one-step process, by introducing a linear decision
function that maps feature observations directly to ordering decisions.
To learn the optimal coefficients of the decision function, one min-
imizes the empirical cost over a data set with demand and feature
observations.

Let
{

(𝐱𝑖, 𝑑𝑖)
}

𝑖∈𝑆 be a data set indexed by 𝑆 = {1,… , 𝑛}, where
𝐱𝑖 is an (𝑚 + 1)-dimensional feature vector and 𝑑𝑖 is a scalar demand
observation. Let 𝐽 = {0,… , 𝑚} denote the set of feature indices. We
assume that 𝑥0𝑖 = 1 represents the feature-independent intercept term,
for all 𝑖 ∈ 𝑆. In this setting, Beutel and Minner (2012) consider a linear
decision function of the form:

𝑞(𝐱) = 𝛽0 +
𝑚
∑

𝑗=1
𝛽𝑗𝑥𝑗 = 𝜷⊤𝐱, (4)

where 𝜷 ∈ R𝑚+1 is the parameter vector, whose values are learned
by minimizing the empirical cost on data set 𝑆. Upon observing new
feature values, the decision-maker can then directly decide upon the
order quantity instead of first estimating the uncertain demand.

Since the learned decision function may overfit to the in-sample
data set 𝑆, it is common practice in machine learning to evaluate
the out-of-sample generalization on a separate test data set 𝑆𝑡𝑒𝑠𝑡. To
avoid overfitting and improve the out-of-sample generalization, Ban
and Rudin (2019) proposed an extension of Beutel and Minner (2012)
by integrating a regularization term into the loss function. Accord-
ingly, the objective comprises a trade-off between minimizing the
empirical in-sample cost and the regularization term, with a constant
hyperparameter balancing these two terms:

(ERM-𝓁𝑝) min
𝜷

1
|𝑆|

∑

𝑖∈𝑆
𝐶(𝑞𝑖 ; 𝑑𝑖) + 𝜆 ‖𝜷‖𝑝 (5)

s.t. 𝑞𝑖 = 𝜷⊤𝐱𝑖 ∀𝑖 ∈ 𝑆, (6)

where 𝜆 ≥ 0 is the regularization hyperparameter and ‖𝜷‖𝑝 is the
𝓁𝑝-norm of the vector 𝜷. Depending on the choice of 𝑝 in the regular-
ization, the resulting model may be a MILP, an LP, or a second-order
cone program, for 𝓁0, 𝓁1, and 𝓁2-norm regularization, respectively.
Effectively, regularization enables feature selection by penalizing the
complexity of the solution, thereby favoring sparse solution vectors.

3. Methodology

We start this section presenting the BHO model, which incorporates
hyperparameter fitting in (ERM-𝓁𝑝). Then, we introduce the BFS model
706

as an alternative bilevel program that avoids regularization.
3.1. Bilevel hyperparameter optimization (BHO)

In Section 2, we assumed the hyperparameter 𝜆 as introduced
in (ERM-𝓁𝑝) to be given. However, identifying 𝜆 constitutes a challenge
in itself as a respective misspecification can significantly reduce cost
performance. To parametrize 𝜆 correctly, one may utilize existing tech-
niques for hyperparameter optimization, which partition the original
data set 𝑆 into a training set 𝑇 and a validation set 𝑉 . On the training
set, one learns the model parameters for a fixed hyperparameter value.
Using the validation set, one can then assess the cost of the trained
model for a variety of hyperparameter values, to finally choose the
value 𝜆∗ that leads to a minimum cost on the validation set. Next, we
present the BHO formulation, which models the search for the optimal
hyperparameter 𝜆∗ as a bilevel optimization problem.

We introduce variables 𝑢𝑖 to model the inventory shortage and
variables 𝑜𝑖 to model the surplus inventory at the end of period 𝑖 ∈
𝑇 ∪ 𝑉 . In the following bilevel programming formulation, the upper-
level (UL) problem searches for an optimal regularization value 𝜆∗ ≥ 0
that minimizes cost on the validation set 𝑉 . In turn, the lower-level (LL)
problem solves the feature-based newsvendor, as stated in (ERM-𝓁𝑝), on
the training set 𝑇 :

(BHO-𝓁𝑝 UL) 𝐶∗
BHO = min 1

|𝑉 |

∑

𝑖∈𝑉

(

𝑏𝑢𝑖 + ℎ𝑜𝑖
)

(7)

s.t. 𝑢𝑖 ≥ 𝑑𝑖 − 𝜷⊤𝐱𝑖 ∀𝑖 ∈ 𝑉 (8)

𝑜𝑖 ≥ 𝜷⊤𝐱𝑖 − 𝑑𝑖 ∀𝑖 ∈ 𝑉 (9)

𝑢𝑖 ≥ 0, 𝑜𝑖 ≥ 0 ∀𝑖 ∈ 𝑉 (10)

𝜆 ≥ 0 (11)

𝜷 ∈ 𝛺𝑝(𝜆), (12)

where 𝛺𝑝(𝜆) is the set of optimal solutions 𝜷 to the lower-level problem,
parameterized by 𝜆:

(BHO-𝓁𝑝 LL) 𝛺𝑝(𝜆) ∶= argmin 1
|𝑇 |

∑

𝑖∈𝑇

(

𝑏𝑢𝑖 + ℎ𝑜𝑖
)

+ 𝜆 ‖𝜷‖2𝑝 (13)

s.t. 𝑢𝑖 ≥ 𝑑𝑖 − 𝜷⊤𝐱𝑖 ∀𝑖 ∈ 𝑇 (14)

𝑜𝑖 ≥ 𝜷⊤𝐱𝑖 − 𝑑𝑖 ∀𝑖 ∈ 𝑇 (15)

𝜷 ∈ R𝑚+1 (16)

𝑢𝑖 ≥ 0, 𝑜𝑖 ≥ 0 ∀𝑖 ∈ 𝑇 (17)

he upper-level objective (7) minimizes the newsvendor cost on the
alidation set 𝑉 and the lower-level objective (13) minimizes the
egularized newsvendor cost on the training set 𝑇 . Constraints (8) and
14) define the inventory shortage for period 𝑖 ∈ 𝑉 and 𝑖 ∈ 𝑇 , respec-
ively, given the decision function parameterized by 𝜷. Constraints (9)
nd (15) define the surplus inventory at period 𝑖 ∈ 𝑉 and 𝑖 ∈ 𝑇 .
onstraints (10), (11), (12), (16), and (17) define the variable domains.

So far, we define the BHO formulation in (7)–(17) for a general 𝓁𝑝-
orm, which leads to a different model for different 𝑝. In the following,
e illustrate some properties of BHO under the special case of the 𝓁0-
orm regularization, which minimizes the number of non-zero elements
n the 𝜷 vector. In this case, we introduce the binary variable 𝑧𝑗 to

indicate whether coefficient 𝛽𝑗 is non-zero. The lower-level problem
can then be formulated as a MIP:

(BHO-𝓁0 LL) 𝛺0(𝜆) ∶= argmin 1
|𝑇 |

∑

𝑖∈𝑇

(

𝑏𝑢𝑖 + ℎ𝑜𝑖
)

+ 𝜆
∑

𝑗∈𝐽
𝑧𝑗 (18)

s.t. (14)–(17)

𝛽𝑗 = 0 if 𝑧𝑗 = 0 ∀𝑗 ∈ 𝐽 (19)

𝑧𝑗 ∈ {0, 1} ∀𝑗 ∈ 𝐽 , (20)

where Constraints (14)–(17) define the shortage and surplus inventory
and Constraints (19) enforce that 𝛽𝑗 = 0 if the corresponding feature is
not selected.
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The BHO formulation (7)–(17) generalizes many common methods
for hyperparameter optimization. To avoid the high computational
effort of solving the BHO model to optimality, existing methods relax
the assumption that 𝜆 can take any value in R≥0, and consider a finite
upport set 𝛬 ⊆ R≥0 instead (Bergstra & Bengio, 2012; Bergstra et al.,
013). For example, suppose the values in 𝛬 are equally spaced along
grid, i.e., a line segment, then the resulting model corresponds to

he well-known grid search method. If the values in 𝛬 are randomly
elected in a closed region, then the formulation describes the random
earch method. Other approaches, e.g., based on Bayesian optimization,
ould perform an adaptive search, iteratively selecting a value 𝜆 for the

upper-level variable and then optimizing the lower-level problem. The
iterative selection of new values for 𝜆 depends on the validation per-
formance of previously selected points. In essence, current methods for
hyperparameter optimization, such as the examples described above,
are heuristics that avoid solving the BHO model to optimality.

3.2. Bilevel feature selection (BFS)

To remedy the drawback of BHO, we introduce a bilevel program-
ming formulation specifically designed for feature selection. Instead
of penalizing the number of selected features, we propose a more
intuitive model, in which the upper-level problem selects a subset of
features that minimize the empirical cost on a validation set. We then
reformulate the resulting model into a single-level problem, which is
computationally more tractable, and finally compare the proposed BFS
and BHO models.

Consider our original data set 𝑆, which we partition into a training
set 𝑇 and a validation set 𝑉 . We introduce binary variables 𝑧𝑗 , for 𝑗 ∈ 𝐽 ,
to indicate whether feature 𝑗 is marked as relevant (𝑧𝑗 = 1) or not (𝑧𝑗 =
0). In the upper-level, BFS selects a subset of features that minimizes
the empirical cost on the validation set 𝑉 . The lower-level problem then
learns the optimal coefficients of the decision function in the training
set 𝑇 by solving the ERM model using only the features selected in the
upper-level. We formulate the resulting upper-level problem as follows:

(BFS UL) 𝐶∗
BFS = min 1

|𝑉 |

∑

𝑖∈𝑉

(

𝑏𝑢𝑖 + ℎ𝑜𝑖
)

(21)

s.t. (8)–(10)

𝑧𝑗 ∈ {0, 1} ∀𝑗 ∈ 𝐽 (22)

𝜷 ∈ 𝛱0(𝐳), (23)

where 𝛱0(𝐳) is the set of optimal solutions 𝜷 to the lower-level problem:

(BFS LL) 𝛱0(𝐳) ∶= argmin 1
|𝑇 |

∑

𝑖∈𝑇

(

𝑏𝑢𝑖 + ℎ𝑜𝑖
)

(24)

s.t. (14)–(17)

𝛽𝑗 = 0 if 𝑧𝑗 = 0 ∀𝑗 ∈ 𝐽 (25)

he upper and lower-level objectives (21) and (24) minimize the
ewsvendor cost on the validation set 𝑉 and training set 𝑇 , respec-
ively. Constraints (8)–(10) and (14)–(17) define the shortage and
urplus inventory. Constraints (22)–(23) define the variable domains
nd Constraints (25) ensure that 𝛽𝑗 = 0 if feature 𝑗 is not selected.

We reformulate Model (21)–(25) by substituting the lower-level
roblem by its Karush-Kuhn–Tucker (KKT) conditions (cf. Cao and Chen
006, Fontaine and Minner 2014). We introduce the dual variables 𝜇𝑖,
nd 𝛾𝑖 corresponding to constraints (14) and (15) of the lower-level
roblem. The equivalent single-level (SL) optimization problem can
hen be expressed by using indicator constraints:

BFS SL) min 1
|𝑉 |

∑

𝑖∈𝑉

(

𝑏𝑢𝑖 + ℎ𝑜𝑖
)

(26)

s.t. (8)–(10), (14)–(17), (22), (25)
1 ∑

(𝑏𝑢𝑖 + ℎ𝑜𝑖) ≤
∑

(𝛾𝑖 − 𝜇𝑖)𝑑𝑖 (27)
707

|𝑇 | 𝑖∈𝑇 𝑖∈𝑇
v

𝜇𝑖 +
𝑏
|𝑇 |

≥ 0 ∀𝑖 ∈ 𝑇 (28)

𝛾𝑖 +
ℎ
|𝑇 |

≥ 0 ∀𝑖 ∈ 𝑇 (29)
∑

𝑖∈𝑇
(𝜇𝑖 − 𝛾𝑖)𝑥

𝑗
𝑖 = 0 if 𝑧𝑗 = 1 ∀𝑗 ∈ 𝐽 (30)

𝜇𝑖 ≤ 0, 𝛾𝑖 ≤ 0 ∀𝑖 ∈ 𝑇 (31)

As before, Constraints (8)–(10) and (14)–(17) define the shortage
nd surplus inventory. Constraints (22) and (25) model the selection
f features. Constraint (27) represents the optimality condition of the
ower-level problem, by comparing its primal objective value with the
orresponding dual objective value. Constraints (28) and (29) are the
ual constraints of the lower-level problem associated with primal
ariables 𝑢𝑖 and 𝑜𝑖 for 𝑖 ∈ 𝑇 . Constraints (30) are the dual constraints
elated to the primal variables 𝛽𝑗 for 𝑗 ∈ 𝐽 , and Constraints (31) define
he domain of the dual variables. The single-level reformulation has
𝑛 + 2|𝑇 | + 2|𝐽 | variables and 2𝑛 + 2|𝑇 | + 2|𝐽 | + 1 constraints.

The BFS model shares some similarities with the BHO model. Both
odels have the same upper-level objective and the lower-level objec-

ives differ only in the presence of the regularization term. We provide
n overview of the main properties of both models in Table 1. The
ain advantage of the BFS model regarding tractability is due to the

xistence of binary variables being limited to the upper-level problem.
onsequently, we can reformulate the BFS model into a MILP and

everage existing exact methods to find optimal solutions at a limited
cale or heuristic methods to efficiently solve larger instances.

Moreover, the following results show that the optimal cost of the
FS model is a lower bound to the optimal cost of the BHO model when
dopting 𝓁0-norm regularization.

emma 1. Given a fixed selection of features 𝐳 for both BHO and BFS,
.e., 𝐳BHO = 𝐳BFS = 𝐳′ (assuming that 𝐳′ is feasible for both problems),
olving the remaining problems for the rest of the decision variables yields
ptimal solutions 𝜷BHO

|

|

|𝐳=𝐳′
= 𝜷BFS

|

|

|𝐳=𝐳′
with costs 𝐶BHO

|

|

|𝐳=𝐳′
= 𝐶BFS

|

|

|𝐳=𝐳′
.

roof. By fixing 𝐳BHO = 𝐳′, the regularization term in the lower-
evel objective becomes constant and 𝜆 does not influence the optimal
olution. Therefore, we can ignore regularization and the lower-level
roblem of the BHO becomes equal to the lower-level problem of the
FS, leading to 𝜷BHO

|

|

|𝐳=𝐳′
= 𝜷BFS

|

|

|𝐳=𝐳′
as the optimal solution. Since the

pper-level objectives are equal in both models, the optimal costs will
e equal: 𝐶BHO

|

|

|𝐳=𝐳′
= 𝐶BFS

|

|

|𝐳=𝐳′
. □

roposition 1. The optimal cost of the BFS model is a lower bound for the
ptimal cost of the BHO model with 𝓁0-norm regularization: 𝐶∗

BHO ≥ 𝐶∗
BFS.

roof. Let 𝐳BHO = 𝐳∗ be the optimal selection of features according
o BHO with cost 𝐶∗

BHO. Suppose that 𝐳BFS = 𝐳′ is a solution to BFS,
uch that 𝐶∗

BHO < 𝐶BFS
|

|

|𝐳=𝐳′
. We can always improve the cost of BFS by

etting 𝐳BFS = 𝐳∗ in the upper-level problem. Because of Lemma 1, this
ill result in a new solution with cost 𝐶BFS

|

|

|𝐳=𝐳∗
= 𝐶∗

BHO ≥ 𝐶∗
BFS. □

.3. Bilevel feature selection with cross-validation (BFS-CV)

Cross-validation strategies often improve the generalization ability
f machine learning models and prevent overfitting by using data
e-sampling methods. Accordingly, we extend the BFS model to cross-
alidation instead of simple hold-out validation. We consider 𝐾
raining-validation splits of the data and search for the set of features
hat minimize the average cost over all 𝐾 validation sets. For each
∈ [𝐾] = {1,… , 𝐾}, we consider a subset of observations 𝑆𝑘 ⊆ 𝑆

ampled from the original data set 𝑆. Analogously to BFS, we partition
he set 𝑆𝑘 into a training set 𝑇𝑘 and a validation set 𝑉𝑘. We introduce

ariables 𝑢𝑖𝑘 and 𝑜𝑖𝑘 to model the inventory shortage and surplus,
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Table 1
Comparison between BFS and BHO with 𝓁0-norm regularization.

Formulation BHO (𝓁0-norm reg.) BFS

Upper-level Objective minimize validation cost minimize validation cost

Variables 𝜆 ∈ R≥0 𝐳 ∈ {0, 1}𝑚+1

Lower-level Objective minimize training cost + regularization minimize training cost

Variables 𝜷 ∈ R𝑚+1 , 𝐳 ∈ {0, 1}𝑚+1 𝜷 ∈ R𝑚+1
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respectively, at the end of period 𝑖 ∈ 𝑇𝑘∪𝑉𝑘 for each training-validation
split 𝑘 ∈ [𝐾]. We then learn the model parameters 𝜷𝑘 ∈ R𝑚+1 using the
corresponding training set 𝑇𝑘, and select features by minimizing the
average validation cost over all validation sets 𝑉𝑘 for 𝑘 ∈ [𝐾]. The
resulting problem is a bilevel program with 𝐾 lower-level problems:

(BFS-CV UL) min 1
𝐾

𝐾
∑

𝑘=1

1
|𝑉𝑘|

∑

𝑖∈𝑉𝑘

(

𝑏𝑢𝑖𝑘 + ℎ𝑜𝑖𝑘
)

(32)

s.t. 𝑢𝑖𝑘 ≥ 𝑑𝑖 − 𝜷⊤
𝑘 𝐱𝑖 ∀ 𝑘 ∈ [𝐾],∀𝑖 ∈ 𝑉𝑘 (33)

𝑜𝑖𝑘 ≥ 𝜷⊤
𝑘 𝐱𝑖 − 𝑑𝑖 ∀ 𝑘 ∈ [𝐾],∀𝑖 ∈ 𝑉𝑘 (34)

𝑢𝑖𝑘 ≥ 0, 𝑜𝑖𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾],∀𝑖 ∈ 𝑉𝑘 (35)

𝑧𝑗 ∈ {0, 1} ∀𝑗 ∈ 𝐽 (36)

𝜷𝑘 ∈ 𝛱𝑘(𝐳) ∀ 𝑘 ∈ [𝐾], (37)

here 𝛱𝑘(𝐳) is the set of optimal solutions corresponding to the 𝑘th
ower-level problem:

BFS-CV LL) 𝛱𝑘(𝐳) ∶= argmin 1
|𝑇𝑘|

∑

𝑖∈𝑇𝑘

(

𝑏𝑢𝑖𝑘 + ℎ𝑜𝑖𝑘
)

(38)

s.t. 𝑢𝑖𝑘 ≥ 𝑑𝑖 − 𝜷⊤
𝑘 𝐱𝑖 ∀𝑖 ∈ 𝑇𝑘 (39)

𝑜𝑖𝑘 ≥ 𝜷⊤
𝑘 𝐱𝑖 − 𝑑𝑖 ∀𝑖 ∈ 𝑇𝑘 (40)

𝑢𝑖𝑘 ≥ 0, 𝑜𝑖𝑘 ≥ 0 ∀𝑖 ∈ 𝑇𝑘 (41)

𝛽𝑗𝑘 = 0 if 𝑧𝑗 = 0 ∀𝑗 ∈ 𝐽 (42)

𝜷𝑘 ∈ R𝑚+1 (43)

onstraints (33)–(35) and (39)–(41) define the shortage and surplus
nventory for period 𝑖 ∈ 𝑉𝑘 and 𝑖 ∈ 𝑇𝑘, respectively for each split
∈ [𝐾]. Constraints (36), (37), and (43) define the variable domains

nd Constraints (42) ensure that 𝛽𝑗𝑘 = 0 if feature 𝑗 is not selected for
he training-validation split 𝑘.

The above model can accommodate different cross-validation strate-
ies, such as 𝐾-fold, random permutations (Shuffle & Split), or Leave-
-Out cross-validation (see, e.g., Arlot and Celisse 2010, Hastie et al.
009). Each particular choice of cross-validation strategy corresponds
o a different approach for constructing the subsets 𝑆𝑘 and partitioning
he data into 𝑇𝑘 and 𝑉𝑘. Moreover, the special case with 𝐾 = 1
orresponds to the previously introduced BFS model.

Analogously to BFS, Bilevel Feature Selection with cross-validation
BFS-CV) can be reformulated into a single-level MILP:

BFS-CV SL) min 1
𝐾

𝐾
∑

𝑘=1

1
|𝑉𝑘|

∑

𝑖∈𝑉𝑘

(

𝑏𝑢𝑖𝑘 + ℎ𝑜𝑖𝑘
)

(44)

s.t. (33)–(36), (39)–(43)
1

|𝑇𝑘|
∑

𝑖∈𝑇𝑘

(𝑏𝑢𝑖𝑘 + ℎ𝑜𝑖𝑘) ≤
∑

𝑖∈𝑇𝑘

(𝛾𝑖𝑘 − 𝜇𝑖𝑘)𝑑𝑖 ∀ 𝑘 ∈ [𝐾] (45)

𝜇𝑖𝑘 +
𝑏

|𝑇𝑘|
≥ 0 ∀𝑘 ∈ [𝐾], ∀𝑖 ∈ 𝑇𝑘 (46)

𝛾𝑖𝑘 +
ℎ

|𝑇𝑘|
≥ 0 ∀𝑘 ∈ [𝐾], ∀𝑖 ∈ 𝑇𝑘 (47)

∑

𝑖∈𝑇𝑘

(𝜇𝑖𝑘 − 𝛾𝑖𝑘)𝑥
𝑗
𝑖 = 0 if 𝑧𝑗 = 1 ∀𝑘 ∈ [𝐾], ∀𝑗 ∈ 𝐽 (48)

𝜇𝑖𝑘 ≤ 0, 𝛾𝑖𝑘 ≤ 0 ∀𝑘 ∈ [𝐾], ∀𝑖 ∈ 𝑇𝑘 (49)
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Fig. 1. Impact of instance size on the accuracy of feature recovery.

onstraints (45) represents the optimality condition of the lower-level
roblem, for each training-validation split 𝑘 ∈ [𝐾]. Constraints (46)
nd (47) are the dual constraints of the lower-level problem associated
ith primal variables 𝑢𝑖𝑘 and 𝑜𝑖𝑘 for 𝑖 ∈ 𝑇𝑘 for 𝑘 ∈ [𝐾]. Constraints (48)
re the dual constraints related to the primal variables 𝜷𝑘 for 𝑘 ∈ [𝐾],
nd Constraints (49) define the domain of the dual variables. The
ingle-level reformulation has 𝐾(4|𝑇 | + 2|𝑉 | + |𝐽 |) + |𝐽 | variables and
(4|𝑇 | + 2|𝑉 | + 2|𝐽 | + 1) constraints.

. Experimental design

To benchmark our approaches, we perform extensive computational
xperiments on synthetic instances. The goals of our computational
xperiments are fourfold.

(i) We evaluate the performance of a MILP approach for the pro-
posed BFS and BFS-CV models in terms of feature selection and
generalization to out-of-sample data;

(ii) We compare the performance of our approach against existing
regularization-based methods;

(iii) For each method, we compare the performance of hold-out
validation against cross-validation;

(iv) We analyze the effect of different instance parameters on each
method’s performance.

We implemented all methods in C++, using CPLEX 20.1 to solve
he respective MILP formulations. All experiments were performed on
achines with Intel Core i7-6700 CPU at 3.40 GHz, with 16 GB of RAM,

nd Ubuntu 16.04.6 LTS operating system, under a time limit of 900 s.
e provide the source code and data at https://github.com/tumBAIS/

eature-Selection-Newsvendor.

.1. Instances

We adapt the experimental setup from Zhu et al. (2012) and con-
ider a linear demand model with additive noise:

linear(𝐱) = 5 + 𝜷⊤𝐱 + 𝜖, (50)

here 𝜷 = (0, 2,−2,−1, 1, 0,… , 0)⊤∕
√

10 is an (𝑚+1)-dimensional vector
representing the ground-truth coefficients. The feature variables 𝐱 ∈

https://github.com/tumBAIS/Feature-Selection-Newsvendor
https://github.com/tumBAIS/Feature-Selection-Newsvendor
https://github.com/tumBAIS/Feature-Selection-Newsvendor
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Fig. 2. Impact of instance size on the test cost performance of different methods, relative to BFS-CV.
Fig. 3. Impact of number of features 𝑚 on the accuracy of feature recovery.

R𝑚+1 are drawn from a multivariate Gaussian distribution with mean
zero and covariance matrix with entries 𝜎𝑖𝑗 = 0.5|𝑖−𝑗|, for (𝑖, 𝑗) ∈ 𝐽 2.
The noise term follows a Gaussian distribution 𝜖 ∼  (0, 𝜎2𝜖 ). We set
negative demand values to zero.

We generate instances varying the number of samples 𝑛 from 40 to
2000 and the number of features 𝑚 from 8 to 14. We deliberately limit
the instance sizes in our experiments so that we can find globally opti-
mal or near-optimal solutions within reasonable computation time. For
each configuration, we generate 20 instances to account for variability
in the distributions. Additionally, we generate a separate test set with
1000 observations associated with each instance, following the same
distributions.

Furthermore, we analyze the impact of demand misspecification,
i.e., when the demand is not linearly related to the features. We
investigate the following nonlinear demand model (cf. Zhu et al. 2012):

𝑑nonlinear(𝐱) = 10 + sin
(

2(𝜷⊤𝐱)
)

+ 2 exp
(

−16(𝜷⊤𝐱)2
)

+ 𝜑(𝜷⊤𝐱)𝜖, (51)

where 𝜑(𝜷⊤𝐱) = 1 for a homoscedastic case and 𝜑(𝜷⊤𝐱) = exp(𝜷⊤𝐱) for
a heteroscedastic case.

We solve the proposed BFS and BFS-CV models and compare the
results against regularization-based methods from the literature. Since
our motivation for feature selection is to provide more explainable
decisions, we focus on methods based on linear decision functions,
which are intrinsically more explainable. We consider the ERM model
of Ban and Rudin (2019) with 𝓁0 and 𝓁1-norm regularization and use
grid search with 50 break-points to calibrate the regularization param-
eter. We run each considered method once using a hold-out validation
set and once with Shuffle & Split cross-validation (CV). For hold-out
validation, we use half of the samples in each instance as a training set
and the other half as a validation set, following the setting in Zhu et al.
(2012). For cross-validation, we perform 𝐾 = 50 re-sampling iterations,
where we sample a subset of size |𝑆 | = min{200, 𝑛}, for each 𝑘 ∈ [𝐾].
709

𝑘

4.2. Performance metrics

We assess the ability of each method to recover the ground-truth
feature vector, adopting the accuracy measure:

𝛼 = 1
𝑚

𝑚
∑

𝑗=1
1(�̂�𝑗 = 𝑧∗𝑗 ), (52)

where 1(⋅) is the indicator function, �̂� = [�̂�1,… , �̂�𝑚] is the estimated
binary feature vector, and 𝐳∗ = [𝑧∗1 ,… , 𝑧∗𝑚] is the ground-truth vector,
defined as 𝑧∗𝑗 = 0 if 𝛽∗𝑗 = 0, i.e., feature 𝑗 is non-informative, otherwise
𝑧∗𝑗 = 1. Our definition of accuracy is analogous to the one commonly
adopted for binary classification, where 𝑧∗𝑗 ∈ {0, 1} represents the class
assigned to feature 𝑗.

Additionally, we analyze the cost performance of applying the
learned decision functions to out-of-sample data. We therefore evaluate
the out-of-sample cost on a separate test data set with 1000 observa-
tions. We report the test cost values of each method  in terms of its
percentage deviation relative to the test cost achieved by BFS-CV on
the same configuration:

𝛿() = 100 ×
𝐶 𝑡𝑒𝑠𝑡
 − 𝐶 𝑡𝑒𝑠𝑡

BFS-CV
𝐶 𝑡𝑒𝑠𝑡

BFS-CV
, (53)

where 𝐶 𝑡𝑒𝑠𝑡
 is the average newsvendor cost of method  calculated

on the test set. Deviation values greater than zero indicate that BFS-
CV improves upon method  regarding test cost performance, while
values below zero indicate that method  achieves lower test cost than
BFS-CV.

5. Results

First, we present results concerning instances generated by the lin-
ear demand model, and then discuss results on instances with nonlinear
demand.

5.1. Linear demand model

We analyze how instance size, number of features, noise level,
shortage cost, and holding cost affect the performance of each method.
Unless otherwise stated, we use a setting with 𝑛 = 1000 samples,
𝑚 = 10 features, a shortage cost of 𝑏 = 2, and a holding cost of ℎ = 1
as reference configuration. For the noise term, we consider 𝜎𝜖 = 1
as reference configuration for the Gaussian distribution. We provide
results regarding computation times in Appendix A.

Instance size. Fig. 1 reports the feature recovery accuracy of the differ-
ent methods for a varying number of samples 𝑛 ∈ [40, 2000], averaged
over 20 randomly generated instances. In general, BFS-CV achieves
the highest accuracy among all methods and faster convergence for
increasing 𝑛, with accuracy values above 0.9 already for instances with
200 samples. In contrast, existing methods often yield accuracy values
below 0.9 and fail to recover the ground-truth features accurately, even
for instances with a larger number of samples. We confirm these results
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Fig. 4. Impact of number of features 𝑚 on the test cost performance of different methods, relative to BFS-CV.
at 5% significance level by pairwise Wilcoxon signed-rank tests, and
refer to Appendix B for details on the respective p-values.

Besides feature recovery, we evaluate the out-of-sample cost per-
formance of each method. Fig. 2 shows the distribution of percentage
deviations, where a positive deviation indicates that BFS-CV is superior
to the respective other method. We split the results in three different
plots based on the sample size 𝑛, classifying each instance as small,
medium, or large. BFS-CV outperforms the other methods in most cases,
as the lower quartiles are always above or close to zero. For smaller
instances, test cost deviations can be as high as 30% in the best case.
As we increase 𝑛, all methods present improving test cost performance
and the variance in the test cost distribution decreases. Yet, BFS-CV
is still superior to the other methods in the wide majority of cases. For
large instances, all methods present mostly positive test cost deviations,
with values ranging from −1% to 8%.

Number of features. Fig. 3 shows average feature recovery accuracy
values, where we now fix the number of samples to 𝑛 = 1000 and
vary the number of features 𝑚 ∈ {8, 10, 12, 14}. For all methods, the
number of features does not strongly affect the accuracy performance.
Notably, BFS-CV achieves average accuracy values consistently above
0.95, being superior to the other methods, as confirmed by pairwise
Wilcoxon tests.

Regarding test cost performance, Fig. 4 shows the distribution of
test cost deviations. We focus on large instances (𝑛 ≥ 1500) in this
analysis, which have lower variance, so that we can isolate the impact
of 𝑚 on the test cost. For BFS, ERM-𝓁0, and ERM-𝓁1, the number of
features has no strong influence on the test cost deviations. In contrast,
the performance of ERM-𝓁0 (CV) and ERM-𝓁1 (CV) shows increasing
deviation values for increasing 𝑚. In the majority of cases, BFS-CV
outperforms the other considered methods.

Noise level. We vary the coefficient of variation 𝑐v = 𝜎𝜖∕𝜇 ∈ [0.2, 1]
and report the average feature recovery accuracy for each method in
Fig. 5. As we increase the level of noise, it becomes harder to recover
the informative features and the accuracy of all methods deteriorates.
For 𝑐v ∈ [0.2, 0.6], BFS-CV achieves the highest accuracy among the
considered methods. Outside this range, BFS-CV is outperformed by
ERM-𝓁0 (CV) for 𝑐v = 0.1 and by ERM-𝓁0 for 𝑐v ≥ 0.8, respectively. Still,
BFS-CV generally attains comparatively high accuracy, being superior
to most other methods.

Fig. 6 illustrates the impact of different noise levels on test cost
performance, considering large instances (𝑛 ≥ 1500). Methods BFS,
ERM-𝓁0, and ERM-𝓁1 mostly outperform BFS-CV for 𝑐v ≥ 0.4. In such
cases, test cost deviations range from −4% to 4%, indicating that BFS-
CV achieves comparable results even when its performance is inferior to
other methods. Methods ERM-𝓁0 (CV) and ERM-𝓁1 (CV) perform com-
paratively worse, with mostly positive deviations and larger variance
in the distribution.
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Fig. 5. Impact of different noise levels on the accuracy of feature recovery.

Shortage and holding costs. Fig. 7 displays results on the accuracy
performance as a function of the newsvendor ratio 𝑏∕(𝑏+ℎ), by varying
(𝑏, ℎ) ∈ [1, 10]2. In general, BFS-CV has accuracy values consistently
above 0.9 and outperforms the other methods.

Fig. 8 shows results on test cost performance of each method as a
function of 𝑏, for large instances (𝑛 ≥ 1500), where we fixed ℎ = 1,
corresponding to newsvendor ratios 𝑏∕(𝑏 + ℎ) ≥ 0.5. ERM-𝓁0 (CV) and
ERM-𝓁1 (CV) generally perform worse than BFS-CV, since the deviation
values are often positive. For all considered methods, we observe that
the test cost deviations range from −6% to 10% and the variance
increases with increasing 𝑏. We observed similar results for cases with
𝑏∕(𝑏 + ℎ) < 0.5.

5.2. Nonlinear demand model

Demand may not be linearly related to the features. Therefore,
we investigate how each method performs under nonlinear demand
models, considering homoscedastic and heteroscedastic settings. In the
following, we only present results regarding accuracy performance.
Results on test cost performance did not provide new insights, since
we observed similar patterns as in the case of linear instances (see Ap-
pendix C). Unless otherwise stated, we use the same reference config-
uration as in the previous section.

Instance size. Due to the nonlinear structure of the demand models,
Fig. 9 shows considerably lower accuracy values compared to instances
with linear demand. For heteroscedastic instances, BFS-CV outperforms
existing methods, with accuracy values above 0.9 already for 𝑛 =
500 samples. For the homoscedastic case, all methods present inferior
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Fig. 6. Impact of noise level on the test cost performance of different methods, relative to BFS-CV.
Fig. 7. Impact of shortage cost 𝑏 and holding cost ℎ on the accuracy of feature
recovery.

accuracy compared to the heteroscedastic case. In this setting, BFS-
CV and ERM-𝓁0 present comparable performance, superior to the other
considered methods.

Number of features. Fig. 10 shows the average feature recovery
accuracy for varying 𝑚 ∈ {8, 10, 12, 14}, for both homoscedastic and
heteroscedastic demand. Similarly as for instances with linear de-
mand, the number of features does not strongly influence the accuracy
performance for nonlinear instances.

Noise level. For the heteroscedastic case, BFS-CV outperforms existing
methods (Fig. 11). In this setting, varying the standard deviation 𝜎𝜖
does not strongly affect the accuracy performance. For homoscedas-
tic instances, all methods present inferior accuracy compared to het-
eroscedastic instances. Here, ERM-𝓁0 is superior to other methods for
most values of 𝜎𝜖 , but BFS-CV often presents comparable accuracy.

Shortage and holding costs. In Fig. 12, for heteroscedastic instances,
BFS-CV has superior accuracy than other methods when 𝑏∕(𝑏+ℎ) ≥ 0.3.
We observe that all methods perform poorly when the newsvendor ratio
is below 0.3. In particular, the considered methods often do not recover
any features when 𝑏∕(𝑏 + ℎ) ∈ [0.1, 0.2], leading to accuracy values
between 0.5 and 0.65. For the homoscedastic case, the accuracy of all
methods decreases with increasing newsvendor ratios, with values often
below 0.8. In this setting, BFS-CV is superior to most methods, but is
outperformed by ERM-𝓁0 when 𝑏∕(𝑏 + ℎ) ≥ 0.8 and by ERM-𝓁1 (CV)
when 𝑏∕(𝑏 + ℎ) ∈ [0.2, 0.35].

One comment on these results is in order. Applying a linear decision
function to nonlinear data may naturally lead to poor results, due to the
inconsistent dependency structure with respect to the features. In some
cases, we observed that all methods fail to achieve reasonable accuracy
in feature recovery. However, for the vast majority of settings that
we considered, BFS-CV presented good performance, outperforming
the other methods. One possibility for dealing with such nonlinear
711
instances would be to include additional features by considering nonlin-
ear transformations of the original features, which we leave for future
research.

6. Conclusion

We have presented a novel formulation based on bilevel optimiza-
tion for incorporating feature selection in the feature-based newsvendor
problem. The proposed BFS models provide an intuitive approach
specifically designed for the task of feature selection, in which the
upper-level problem directly selects the subset of relevant features. Our
experimental results on synthetic data show that the proposed meth-
ods can accurately recover ground-truth informative features, leading
to more explainable inventory decisions in comparison to previous
methods.

There are many possibilities for follow-up works. First, research
on tailored solution methods for BFS and BFS-CV, e.g., based on de-
composition strategies for mixed integer programming, may allow to
improve the scalability of the proposed methods when dealing with
a large number of features. Second, tailoring heuristic methods to
efficiently solve very large instances remains an interesting avenue
for future research. In this context, our proposed solution methods
provide useful benchmarks for evaluating the performance of heuristics
with respect to solution quality. Third, other classes of data-driven
optimization problems may benefit from an extension of the proposed
methodology. As an example, the newsvendor problem also captures
the fundamental trade-offs emerging in decisions related to capacity
planning. Accordingly, an extension of the proposed BFS models may
be applied to select features in stochastic, data-driven variations of such
problems. Finally, from a broader perspective, incorporating concepts
from machine learning into data-driven optimization problems may
lead to crucial advances for both fields. As exemplified in this work,
feature selection is one among possibly many machine learning tasks
that can be integrated into the decision-making process, especially
given the growing need for more explainable decisions.
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Fig. 8. Impact of shortage cost 𝑏 on the test cost performance of different methods, relative to BFS-CV.

Fig. 9. Impact of instance size on the accuracy of feature recovery.

Fig. 10. Impact of number of features 𝑚 on the accuracy of feature recovery.

Fig. 11. Impact of different noise levels on the accuracy of feature recovery.
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