Roya Alizadeh, Yvon Savaria et Chahe Nerguizian
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (5MB) |
Abstract
Robust methods are needed to detect how people are moving in smart public transportation systems. This paper proposes and characterizes effective means to accurately detect passengers. We analyze a public WiFi-based activity recognition (WiAR) dataset to extract human activity features from Channel State Information (CSI) data. To do so, CSI power changes caused by nearby human activity are analyzed. Our method first extracts multi-dimensional features using a Short-Time Fourier Transform (STFT) of CSI data to capture the relevant signal features. Since the environment of a transportation system changes dynamically and non-deterministically, we propose analyzing these changes with a heuristic algorithm that leverages a decision tree to automate a decision-making solution for feature selection. Principal Component Analysis (PCA) is performed before the decision tree algorithm. Reported results are compared with those obtained from the existing methods. Based on these results, we explore the effectiveness of various features such as the chirp rate, delta band power, spectral flux, and frequency of movement. This allows identifying and recommending the most effective features for the explored detection task according to observed variability, information gain, and correlation between features. The reported classification results show that using only the chirp rate estimated from CSI information as a feature, we achieve precision = 83%, True Positive (TP)=94% , True Negative (TN)=91% and F1-score = 87%. Considering delta band power as an additional feature adds more information and allows getting higher performance with precision = 100%, TP=97% , TN=95% and F1-score = 95%.
Mots clés
feature extraction and analysis; classification; human activity recognition; channel state information (CSI); chirp rate; smart public transportation systems; principal component analysis (PCA); decision tree; feature selection
Sujet(s): |
1000 Génie civil > 1003 Génie du transport 2500 Génie électrique et électronique > 2500 Génie électrique et électronique 2500 Génie électrique et électronique > 2506 Circuits et dispositifs électroniques |
---|---|
Département: | Département de génie électrique |
Organismes subventionnaires: | CRSNG/NSERC |
URL de PolyPublie: | https://publications.polymtl.ca/57261/ |
Titre de la revue: | IEEE Open Journal of Intelligent Transportation Systems (vol. 5) |
Maison d'édition: | IEEE |
DOI: | 10.1109/ojits.2023.3336795 |
URL officielle: | https://doi.org/10.1109/ojits.2023.3336795 |
Date du dépôt: | 29 janv. 2024 14:38 |
Dernière modification: | 30 sept. 2024 16:30 |
Citer en APA 7: | Alizadeh, R., Savaria, Y., & Nerguizian, C. (2024). Characterization and selection of WiFi channel state information features for human activity detection in a smart public transportation system. IEEE Open Journal of Intelligent Transportation Systems, 5, 55-69. https://doi.org/10.1109/ojits.2023.3336795 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions