<  Retour au portail Polytechnique Montréal

Characterization and selection of WiFi channel state information features for human activity detection in a smart public transportation system

Roya Alizadeh, Yvon Savaria et Chahe Nerguizian

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (5MB)
Afficher le résumé
Cacher le résumé

Abstract

Robust methods are needed to detect how people are moving in smart public transportation systems. This paper proposes and characterizes effective means to accurately detect passengers. We analyze a public WiFi-based activity recognition (WiAR) dataset to extract human activity features from Channel State Information (CSI) data. To do so, CSI power changes caused by nearby human activity are analyzed. Our method first extracts multi-dimensional features using a Short-Time Fourier Transform (STFT) of CSI data to capture the relevant signal features. Since the environment of a transportation system changes dynamically and non-deterministically, we propose analyzing these changes with a heuristic algorithm that leverages a decision tree to automate a decision-making solution for feature selection. Principal Component Analysis (PCA) is performed before the decision tree algorithm. Reported results are compared with those obtained from the existing methods. Based on these results, we explore the effectiveness of various features such as the chirp rate, delta band power, spectral flux, and frequency of movement. This allows identifying and recommending the most effective features for the explored detection task according to observed variability, information gain, and correlation between features. The reported classification results show that using only the chirp rate estimated from CSI information as a feature, we achieve precision = 83%, True Positive (TP)=94% , True Negative (TN)=91% and F1-score = 87%. Considering delta band power as an additional feature adds more information and allows getting higher performance with precision = 100%, TP=97% , TN=95% and F1-score = 95%.

Mots clés

feature extraction and analysis; classification; human activity recognition; channel state information (CSI); chirp rate; smart public transportation systems; principal component analysis (PCA); decision tree; feature selection

Sujet(s): 1000 Génie civil > 1003 Génie du transport
2500 Génie électrique et électronique > 2500 Génie électrique et électronique
2500 Génie électrique et électronique > 2506 Circuits et dispositifs électroniques
Département: Département de génie électrique
Organismes subventionnaires: CRSNG/NSERC
URL de PolyPublie: https://publications.polymtl.ca/57261/
Titre de la revue: IEEE Open Journal of Intelligent Transportation Systems (vol. 5)
Maison d'édition: IEEE
DOI: 10.1109/ojits.2023.3336795
URL officielle: https://doi.org/10.1109/ojits.2023.3336795
Date du dépôt: 29 janv. 2024 14:38
Dernière modification: 30 sept. 2024 16:30
Citer en APA 7: Alizadeh, R., Savaria, Y., & Nerguizian, C. (2024). Characterization and selection of WiFi channel state information features for human activity detection in a smart public transportation system. IEEE Open Journal of Intelligent Transportation Systems, 5, 55-69. https://doi.org/10.1109/ojits.2023.3336795

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document