<  Back to the Polytechnique Montréal portal

An Empirical Study of the Causes and Symptoms of Machine Learning Exceptions

Amin Ghadesi

Master's thesis (2023)

[img] Restricted to: Repository staff only until 10 May 2025
Terms of Use: All rights reserved
Show abstract
Hide abstract

Abstract

Machine learning (ML), including deep learning, has recently gained tremendous popularity in a wide range of applications. However, like traditional software, ML applications are not immune to the bugs that result from programming errors. Programmatic failures typically manifest as exceptions during program execution. Understanding the root causes and symptoms of ML exceptions can offer developers valuable insights to enhance their programming practices and prevent such exceptions. This thesis aims to pave the way for future investigations focused on developing solutions to aid ML developers in preventing or diminishing exceptions. Despite previous studies delving into exceptions in traditional software, there is a lack of systematic exploration of ML exceptions in the existing literature. Consequently, this thesis conducts a comprehensive empirical study of Stack Overflow (SO) questions related to ML exceptions, seeking to comprehend the causes and symptoms associated with these exceptions. The first part of this thesis explores the causes of ML exceptions by analyzing the stack traces of ML applications posted on SO. These stack traces describe the chain of function calls that lead to an anomalous situation or exception. Indeed, these exceptions may cross the entire software stack (including applications and libraries). Thus, studying the MLrelated patterns in stack traces can help practitioners and researchers understand the causes of exceptions in ML applications and the challenges faced by ML developers. To that end, we mine SO and study 11, 449 ML-related stack traces related to seven popular Python ML libraries. First, we observe that ML questions that contain stack traces are less likely to get accepted answers than questions that don’t, even though they gain more attention (i.e., more views and comments).

Résumé

L’apprentissage machine (ML), y compris l’apprentissage profond, a récemment gagné en popularité dans un large éventail d’applications. Toutefois, comme les logiciels traditionnels, les applications d’apprentissage automatique ne sont pas à l’abri des bogues résultant d’erreurs de programmation. Les défaillances programmatiques se manifestent généralement par des exceptions au cours de l’exécution du programme. Comprendre les causes et les symptômes des exceptions de ML peut offrir aux développeurs des informations précieuses pour améliorer leurs pratiques de programmation et prévenir de telles exceptions. Cette thèse vise à ouvrir la voie à de futures recherches axées sur le développement de solutions pour aider les développeurs de ML à prévenir ou à réduire les exceptions. Malgré des études antérieures portant sur les exceptions dans les logiciels traditionnels, il n’y a pas d’exploration systématique des exceptions en ML dans la littérature existante. Par conséquent, cette thèse mène une étude empirique complète des questions de Stack Overflow (SO) liées aux exceptions de ML, cherchant à comprendre les causes et les symptômes associés à ces exceptions. La première partie de cette thèse explore les causes des exceptions de ML en analysant les traces de pile des applications de ML postées sur SO. Ces traces de pile décrivent la chaîne d’appels de fonction qui conduit à une situation anormale ou à une exception. En effet, ces exceptions peuvent traverser toute la pile logicielle (y compris les applications et les bibliothèques). Ainsi, l’étude des modèles liés au ML dans les traces de pile peut aider les praticiens et les chercheurs à comprendre les causes des exceptions dans les applications de ML et les défis auxquels sont confrontés les développeurs de ML. A cette fin, nous exploitons SO et étudions 11, 449 les traces de piles liées à la ML de sept bibliothèques ML Python populaires. Tout d’abord, nous observons que les questions de ML qui contiennent des traces de pile sont moins susceptibles d’obtenir des réponses acceptées que les questions qui n’en contiennent pas, même si elles reçoivent plus d’attention (c.-à-d. plus de vues et de commentaires).

Department: Department of Computer Engineering and Software Engineering
Program: Génie informatique
Academic/Research Directors: Heng Li and Maxime Lamothe
PolyPublie URL: https://publications.polymtl.ca/57116/
Institution: Polytechnique Montréal
Date Deposited: 10 May 2024 10:43
Last Modified: 11 May 2024 12:29
Cite in APA 7: Ghadesi, A. (2023). An Empirical Study of the Causes and Symptoms of Machine Learning Exceptions [Master's thesis, Polytechnique Montréal]. PolyPublie. https://publications.polymtl.ca/57116/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only

View Item View Item