<  Retour au portail Polytechnique Montréal

Performances of a Seq2Seq-LSTM methodology to predict crop rotations in Québec

Ambre Dupuis, Camélia Dadouchi et Bruno Agard

Article de revue (2023)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (3MB)
Afficher le résumé
Cacher le résumé

Abstract

To meet global food requirements while responding to the environmental challenges of the 21st century, an agri-environmental transition towards sustainable agricultural practices is necessary. Crop rotation is an ancestral practice and is a pillar of sustainable agriculture. However, this practice requires more organization on the part of producers for the management of crop inputs. That is why the development of a methodology for forecasting crop rotations in the medium term and at the field level is necessary. However, to date, only a methodology based on the Seq2Seq-LSTM has been theorized without being tested on a concrete case of application. The objective of this article is therefore to evaluate the performance of a Seq2Seq-LSTM methodology to predict crop rotations on a real case. The methodology was applied to a problem of crop rotation prediction for field crop farms in Québec, Canada. Using the Recall(N) metric and a historical sequence of length 6, the next 3 crops grown in a field can be predicted with over 81% success when considering 10 selected options. In addition, the methodology was augmented with contextual information such as economic and meteorological data to refine the forecasts. This augmentation systematically improves the performance of the model. This observation provides a relevant line of research for identifying other factors that influence producers’ decision-making on crop rotation.

Mots clés

agriculture 4.0; crop rotation; deep learning; Seq2Seq; LSTM

Sujet(s): 1600 Génie industriel > 1600 Génie industriel
1600 Génie industriel > 1606 Gestion de la production
2700 Technologie de l'information > 2706 Génie logiciel
Département: Département de mathématiques et de génie industriel
Centre de recherche: CIRRELT - Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport
LID - Laboratoire en intelligence des données
Organismes subventionnaires: CRSNG / NSERC, Fonds de recherche du Québec - Nature et technologies (FRQNT)
URL de PolyPublie: https://publications.polymtl.ca/55784/
Titre de la revue: Smart Agricultural Technology (vol. 4)
Maison d'édition: Elsevier
DOI: 10.1016/j.atech.2023.100180
URL officielle: https://doi.org/10.1016/j.atech.2023.100180
Date du dépôt: 02 oct. 2023 11:19
Dernière modification: 06 oct. 2024 09:07
Citer en APA 7: Dupuis, A., Dadouchi, C., & Agard, B. (2023). Performances of a Seq2Seq-LSTM methodology to predict crop rotations in Québec. Smart Agricultural Technology, 4, 100180 (12 pages). https://doi.org/10.1016/j.atech.2023.100180

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Loading...

Provenance des téléchargements

Loading...

Dimensions

Actions réservées au personnel

Afficher document Afficher document