Émile Lemoine, Joel Neves Briard, Bastien Rioux, Renata Podbielski, Bénédicte Nauche, Denahin Hinnoutondji Toffa, Mark R Keezer, Frédéric Lesage, Dang Khoa Nguyen et Elie Bou Assi
Article de revue (2023)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale (CC BY-NC) Télécharger (341kB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale (CC BY-NC) Télécharger (119kB) |
Abstract
Introduction The diagnosis of epilepsy frequently relies on the visual interpretation of the electroencephalogram (EEG) by a neurologist. The hallmark of epilepsy on EEG is the interictal epileptiform discharge (IED). This marker lacks sensitivity: it is only captured in a small percentage of 30 min routine EEGs in patients with epilepsy. In the past three decades, there has been growing interest in the use of computational methods to analyse the EEG without relying on the detection of IEDs, but none have made it to the clinical practice. We aim to review the diagnostic accuracy of quantitative methods applied to ambulatory EEG analysis to guide the diagnosis and management of epilepsy.
Methods and analysis The protocol complies with the recommendations for systematic reviews of diagnostic test accuracy by Cochrane. We will search MEDLINE, EMBASE, EBM reviews, IEEE Explore along with grey literature for articles, conference papers and conference abstracts published after 1961. We will include observational studies that present a computational method to analyse the EEG for the diagnosis of epilepsy in adults or children without relying on the identification of IEDs or seizures. The reference standard is the diagnosis of epilepsy by a physician. We will report the estimated pooled sensitivity and specificity, and receiver operating characteristic area under the curve (ROC AUC) for each marker. If possible, we will perform a meta-analysis of the sensitivity and specificity and ROC AUC for each individual marker. We will assess the risk of bias using an adapted QUADAS-2 tool. We will also describe the algorithms used for signal processing, feature extraction and predictive modelling, and comment on the reproducibility of the different studies.
Ethics and dissemination Ethical approval was not required. Findings will be disseminated through peer-reviewed publication and presented at conferences related to this field.
Sujet(s): |
1900 Génie biomédical > 1900 Génie biomédical 1900 Génie biomédical > 1901 Technologie biomédicale 1900 Génie biomédical > 1903 Biomécanique |
---|---|
Département: | Institut de génie biomédical |
URL de PolyPublie: | https://publications.polymtl.ca/54346/ |
Titre de la revue: | BMJ Open (vol. 13, no 1) |
Maison d'édition: | BMJ |
DOI: | 10.1136/bmjopen-2022-066932 |
URL officielle: | https://doi.org/10.1136/bmjopen-2022-066932 |
Date du dépôt: | 23 janv. 2024 17:49 |
Dernière modification: | 21 nov. 2024 03:05 |
Citer en APA 7: | Lemoine, É., Briard, J. N., Rioux, B., Podbielski, R., Nauche, B., Toffa, D. H., Keezer, M. R., Lesage, F., Nguyen, D. K., & Assi, E. B. (2023). Computer-assisted analysis of routine electroencephalogram to identify hidden biomarkers of epilepsy: Protocol for a systematic review. BMJ Open, 13(1), e066932 (6 pages). https://doi.org/10.1136/bmjopen-2022-066932 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions