Eugénie Ullmann, Jean François Pelletier Paquette, William Thong et Julien Cohen-Adad
Article de revue (2014)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (857kB) |
Abstract
Context. MRI of the spinal cord provides a variety of biomarkers sensitive to white matter integrity and neuronal function. Current processing methods are based on manual labeling of vertebral levels, which is time consuming and prone to user bias. Although several methods for automatic labeling have been published; they are not robust towards image contrast or towards susceptibility-related artifacts. Methods. Intervertebral disks are detected from the 3D analysis of the intensity profile along the spine. The robustness of the disk detection is improved by using a template of vertebral distance, which was generated from a training dataset. The developed method has been validated using T1- and T2-weighted contrasts in ten healthy subjects and one patient with spinal cord injury. Results. Accuracy of vertebral labeling was 100%. Mean absolute error was 2.1 +/- 1.7 mm for T2-weighted images and 2.3 +/- 1.6 mm for T1-weighted images. The vertebrae of the spinal cord injured patient were correctly labeled, despite the presence of artifacts caused by metallic implants. Discussion. We proposed a template-based method for robust labeling of vertebral levels along the whole spinal cord for T1- and T2-weighted contrasts. The method is freely available as part of the spinal cord toolbox.
Sujet(s): |
2500 Génie électrique et électronique > 2500 Génie électrique et électronique 2500 Génie électrique et électronique > 2518 Instrumentation et mesures 2800 Intelligence artificielle > 2800 Intelligence artificielle (Vision artificielle, voir 2603) |
---|---|
Département: |
Département de génie électrique Institut de génie biomédical |
Organismes subventionnaires: | SMRRT (Canadian Institute of Health Research), National MS Society, Fonds de Recherche du Québec - Santé (FRQS), Quebec Bioimaging Network (QBIN), CRSNG/NSERC |
Numéro de subvention: | FG1892A1/1 |
URL de PolyPublie: | https://publications.polymtl.ca/5156/ |
Titre de la revue: | International Journal of Biomedical Imaging (vol. 2014) |
Maison d'édition: | Hindawi Publishing Corporation |
DOI: | 10.1155/2014/719520 |
URL officielle: | https://doi.org/10.1155/2014/719520 |
Date du dépôt: | 08 avr. 2022 11:13 |
Dernière modification: | 28 sept. 2024 01:16 |
Citer en APA 7: | Ullmann, E., Pelletier Paquette, J. F., Thong, W., & Cohen-Adad, J. (2014). Automatic labeling of vertebral levels using a robust template-based approach. International Journal of Biomedical Imaging, 2014, 1-9. https://doi.org/10.1155/2014/719520 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions