Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Annette Kopp-Schneider, Bennett A. Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Bram van Ginneken, Michel Bilello, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc J. Gollub, Stephan H. Heckers, Henkjan Huisman, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Jennifer S. G. Pernicka, Kawal Rhode, Catalina Tobon-Gomez, Eugene Vorontsov, James A. Meakin, Sebastien Ourselin, Manuel Wiesenfarth, Pablo Arbelaez, Byeonguk Bae, Sihong Chen, Laura Daza, Jianjiang Feng, Baochun He, Fabian Isensee, Yuanfeng Ji, Fucang Jia, Ildoo Kim, Klaus Maier-Hein, Dorit Merhof, Akshay Pai, Beomhee Park, Mathias Perslev, Ramin Rezaiifar, Oliver Rippel, Ignacio Sarasua, Wei Shen, Jaemin Son, Christian Wachinger, Liansheng Wang, Yan Wang, Yingda Xia, Daguang Xu, Zhanwei Xu, Yefeng Zheng, Amber L. Simpson, Lena Maier-Hein et M. Jorge Cardoso
Article de revue (2022)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (10MB) |
Abstract
International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)—a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom- designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algo- rithms generalize well when retrained on unseen tasks; (2) consistent algorithmic perfor- mance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training.
Département: | Département de génie informatique et génie logiciel |
---|---|
URL de PolyPublie: | https://publications.polymtl.ca/51543/ |
Titre de la revue: | Nature Communications (vol. 13, no 1) |
Maison d'édition: | Nature Portfolio |
DOI: | 10.1038/s41467-022-30695-9 |
URL officielle: | https://doi.org/10.1038/s41467-022-30695-9 |
Date du dépôt: | 18 avr. 2023 14:58 |
Dernière modification: | 08 avr. 2025 07:19 |
Citer en APA 7: | Antonelli, M., Reinke, A., Bakas, S., Farahani, K., Kopp-Schneider, A., Landman, B. A., Litjens, G., Menze, B., Ronneberger, O., Summers, R. M., van Ginneken, B., Bilello, M., Bilic, P., Christ, P. F., Do, R. K. G., Gollub, M. J., Heckers, S. H., Huisman, H., Jarnagin, W. R., ... Cardoso, M. J. (2022). The medical segmentation decathlon. Nature Communications, 13(1), 4128 (13 pages). https://doi.org/10.1038/s41467-022-30695-9 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année

Provenance des téléchargements

Dimensions