Gaetan Raynaud, Sébastien Houde and Frederick Gosselin
Article (2022)
An external link is available for this itemDepartment: | Department of Mechanical Engineering |
---|---|
Research Center: | LM2 - Laboratory for Multi-scale Mechanics |
PolyPublie URL: | https://publications.polymtl.ca/50915/ |
Journal Title: | Journal of Computational Physics (vol. 464) |
Publisher: | Academic Press Inc. |
DOI: | 10.1016/j.jcp.2022.111271 |
Official URL: | https://doi.org/10.1016/j.jcp.2022.111271 |
Date Deposited: | 18 Apr 2023 14:59 |
Last Modified: | 08 Apr 2025 07:18 |
Cite in APA 7: | Raynaud, G., Houde, S., & Gosselin, F. (2022). ModalPINN: An extension of physics-informed Neural Networks with enforced truncated Fourier decomposition for periodic flow reconstruction using a limited number of imperfect sensors. Journal of Computational Physics, 464, 18 pages. https://doi.org/10.1016/j.jcp.2022.111271 |
---|---|
Statistics
Dimensions