Christian S. Perone, Evan Calabrese et Julien Cohen-Adad
Article de revue (2018)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (882kB) |
Abstract
Gray matter (GM) tissue changes have been associated with a wide range of neurological disorders and were recently found relevant as a biomarker for disability in amyotrophic lateral sclerosis. The ability to automatically segment the GM is, therefore, an important task for modern studies of the spinal cord. In this work, we devise a modern, simple and end-to-end fully-automated human spinal cord gray matter segmentation method using Deep Learning, that works both on in vivo and ex vivo MRI acquisitions. We evaluate our method against six independently developed methods on a GM segmentation challenge. We report state-of-the-art results in 8 out of 10 evaluation metrics as well as major network parameter reduction when compared to the traditional medical imaging architectures such as U-Nets.
Mots clés
Adult; Amyotrophic Lateral Sclerosis/metabolism/physiopathology; Biomarkers/metabolism; Deep Learning; Female; Gray Matter/metabolism/*physiology; Humans; Image Processing, Computer-Assisted/methods; Magnetic Resonance Imaging/methods; Male; Spinal Cord/metabolism/*physiology; Young Adult
Sujet(s): |
1900 Génie biomédical > 1900 Génie biomédical 2500 Génie électrique et électronique > 2510 Systèmes évolutifs, d'apprentissage et adaptatifs 9000 Sciences de la santé > 9000 Sciences de la santé |
---|---|
Département: |
Institut de génie biomédical Département de génie électrique |
Centre de recherche: | NeuroPoly - Laboratoire de Recherche en Neuroimagerie |
Organismes subventionnaires: | Canada Research Chair in Quantitative Magnetic Resonance Imaging (JCA), Canadian Institute of Health Research, Canada Foundation for Innovation, Fonds de Recherche du Québec - Santé, Fonds de Recherche du Québec - Nature et Technologies, Natural Sciences and Engineering Research Council of Canada, TransMedTech and the Quebec BioImaging Network, ISRT and Wings for Life (INSPIRED project), NVIDIA Corporation, Compute Canada, United States National Institutes of Health |
Numéro de subvention: | CIHR FDN-143263, 32454, 34824, 28826, 2015-PR-182754, 435897-2013, P41 EB015897, 1S10OD010683-01 |
URL de PolyPublie: | https://publications.polymtl.ca/5082/ |
Titre de la revue: | Scientific Reports (vol. 8, no 1) |
Maison d'édition: | Nature |
DOI: | 10.1038/s41598-018-24304-3 |
URL officielle: | https://doi.org/10.1038/s41598-018-24304-3 |
Date du dépôt: | 04 juil. 2022 09:06 |
Dernière modification: | 27 sept. 2024 03:35 |
Citer en APA 7: | Perone, C. S., Calabrese, E., & Cohen-Adad, J. (2018). Spinal cord gray matter segmentation using deep dilated convolutions. Scientific Reports, 8(1), 5966 (13 pages). https://doi.org/10.1038/s41598-018-24304-3 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions