Xavier Hadoux, Flora Hui, Jeremiah K. H. Lim, Colin L. Masters, Alice Pébay, Sophie Chevalier, Jason Ha, Samantha Loi, Christopher J. Fowler, Christopher Rowe, Victor L. Villemagne, Edward N. Taylor, Christopher Fluke, Jean-Paul Soucy, Frédéric Lesage, Jean-Philippe Sylvestre, Pedro Rosa-Neto, Sulantha Mathotaarachchi, Serge Gauthier, Zia S. Nasreddine, Jean Daniel Arbour, Marc-André Rhéaume, Sylvain Beaulieu, Mohamed Dirani, Christine T. O. Nguyen, Bang V. Bui, Robert Williamson, Jonathan G. Crowston et Peter van Wijngaarden
Article de revue (2019)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (963kB) |
Abstract
Studies of rodent models of Alzheimer's disease (AD) and of human tissues suggest that the retinal changes that occur in AD, including the accumulation of amyloid beta (Abeta), may serve as surrogate markers of brain Abeta levels. As Abeta has a wavelength-dependent effect on light scatter, we investigate the potential for in vivo retinal hyperspectral imaging to serve as a biomarker of brain Abeta. Significant differences in the retinal reflectance spectra are found between individuals with high Abeta burden on brain PET imaging and mild cognitive impairment (n = 15), and age-matched PET-negative controls (n = 20). Retinal imaging scores are correlated with brain Abeta loads. The findings are validated in an independent cohort, using a second hyperspectral camera. A similar spectral difference is found between control and 5xFAD transgenic mice that accumulate Abeta in the brain and retina. These findings indicate that retinal hyperspectral imaging may predict brain Abeta load.
Mots clés
Aged; Alzheimer Disease/diagnostic imaging/metabolism; Amyloid beta-Peptides/chemistry/metabolism; Animals; Biomarkers/chemistry/metabolism; Brain/diagnostic imaging/metabolism; Cohort Studies; Female; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Middle Aged; Positron-Emission Tomography; Retina/diagnostic imaging/metabolism; Tomography, Optical Coherence/methods
Sujet(s): |
1900 Génie biomédical > 1900 Génie biomédical 1900 Génie biomédical > 1901 Technologie biomédicale |
---|---|
Département: |
Département de génie électrique Institut de génie biomédical |
URL de PolyPublie: | https://publications.polymtl.ca/4923/ |
Titre de la revue: | Nature Communications (vol. 10, no 1) |
Maison d'édition: | Nature Research |
DOI: | 10.1038/s41467-019-12242-1 |
URL officielle: | https://doi.org/10.1038/s41467-019-12242-1 |
Date du dépôt: | 08 avr. 2022 11:23 |
Dernière modification: | 28 sept. 2024 17:12 |
Citer en APA 7: | Hadoux, X., Hui, F., Lim, J. K. H., Masters, C. L., Pébay, A., Chevalier, S., Ha, J., Loi, S., Fowler, C. J., Rowe, C., Villemagne, V. L., Taylor, E. N., Fluke, C., Soucy, J.-P., Lesage, F., Sylvestre, J.-P., Rosa-Neto, P., Mathotaarachchi, S., Gauthier, S., ... van Wijngaarden, P. (2019). Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer's disease. Nature Communications, 10(1), 4227 (12 pages). https://doi.org/10.1038/s41467-019-12242-1 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions