Abdallah Hadji and Njuki W. Mureithi
Article (2019)
|
Open Access to the full text of this document Published Version Terms of Use: Creative Commons Attribution Download (2MB) |
Abstract
A hybrid friction model was recently developed by Azizian and Mureithi (2013) to simulate the friction behavior of tube-support interaction. However, identification and validation of the model parameters remains unresolved. In previous work, the friction model parameters were identified using the reverse harmonic method, where the following quantities were indirectly obtained by measuring the vibration response of a beam: friction force, sliding speed of the force of impact, and local displacement at the contact point. In the present work, the numerical simulation by the finite element method (FEM) of a beam clamped at one end and simply supported with the consideration of friction effect at the other is conducted. *is beam is used to validate the inverse harmonic balance method and the parameters of the friction models identified previously. Two static friction models (the Coulomb model and Stribeck model) are tested. *e two models produce friction forces of the correct order of magnitude compared to the friction force calculated using the inverse harmonic balance method. However, the models cannot accurately reproduce the beam response; the Stribeck friction model is shown to give the response closest to experiments. *e results demonstrate some of the challenges associated with accurate friction model parameter identification using the inverse harmonic balance method. *e present work is an intermediate step toward identification of the hybrid friction model parameters and, longer-term, improved analysis of tube-support dynamic behavior under the influence of friction.
Subjects: | 2100 Mechanical engineering > 2100 Mechanical engineering |
---|---|
Department: | Department of Mechanical Engineering |
PolyPublie URL: | https://publications.polymtl.ca/4922/ |
Journal Title: | Shock and Vibration (vol. 2019) |
Publisher: | Hindawi |
DOI: | 10.1155/2019/3493052 |
Official URL: | https://doi.org/10.1155/2019/3493052 |
Date Deposited: | 02 May 2022 15:28 |
Last Modified: | 26 Sep 2024 10:57 |
Cite in APA 7: | Hadji, A., & Mureithi, N. W. (2019). Validation of friction model parameters identified using the IHB method using finite element method. Shock and Vibration, 2019, 1-19. https://doi.org/10.1155/2019/3493052 |
---|---|
Statistics
Total downloads
Downloads per month in the last year
Origin of downloads
Dimensions