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A hybrid friction model was recently developed by Azizian and Mureithi (2013) to simulate the friction behavior of tube-support
interaction. However, identification and validation of the model parameters remains unresolved. In previous work, the friction
model parameters were identified using the reverse harmonic method, where the following quantities were indirectly obtained by
measuring the vibration response of a beam: friction force, sliding speed of the force of impact, and local displacement at the
contact point. In the present work, the numerical simulation by the finite element method (FEM) of a beam clamped at one end
and simply supported with the consideration of friction effect at the other is conducted. *is beam is used to validate the inverse
harmonic balance method and the parameters of the friction models identified previously. Two static friction models (the
Coulomb model and Stribeck model) are tested. *e two models produce friction forces of the correct order of magnitude
compared to the friction force calculated using the inverse harmonic balance method. However, the models cannot accurately
reproduce the beam response; the Stribeck friction model is shown to give the response closest to experiments. *e results
demonstrate some of the challenges associated with accurate friction model parameter identification using the inverse harmonic
balance method. *e present work is an intermediate step toward identification of the hybrid friction model parameters and,
longer-term, improved analysis of tube-support dynamic behavior under the influence of friction.

1. Introduction

*e friction model is an essential element in the detailed
analysis of the dynamics of steam generator tubes in the
nuclear industry [1]. Most of the friction models currently
used to simulate tube-support interaction are cited in [2].
*ese are special cases of static friction models. *e velocity-
limited friction model (VLFM) [3] is a continuous Coulomb
model without Stribeck effects [4]. *e force balance friction
model (FBFM) [5] and the spring damper friction model
(SDFM) [6] are two models based on springs and dampers.
*e principle of the Karnopp friction model [7] is used in the
FBFM friction model. Recently, a hybrid friction model [1, 8]
has been developed to model tube-support interaction. In the
hybrid model, all the properties and benefits of other friction
models are included, namely, the dynamics of the Dahl model
[9] (i.e., hysteresis effect), the dynamics of bristles [10], and
the Stribeck effect [4] (transition from the static friction

limitation to the kinetic friction limitation). *is model also
indirectly takes into account the distribution of the stresses in
the contact area according to the principle of Cattaneo–
Mindlin [11] to model the presliding phenomenon.

In finite element modeling (FEM) codes, the Coulomb
friction model and the decay friction model are widely
used; these are combined with the principle of the velocity
limit [3] to model the presliding (sticking) regime [12].
Most of the numerical algorithms for analyzing dynamic
friction in FEM codes are presented by Oden and Martins
[13]. Diehl [14] has also numerically investigated the
friction effect of a circular rigid body in sliding contact with
a flexible beam.

In the present work, we validate the friction coefficient
identified experimentally in previous work [15] using the
finite element method (FEM) using the Abaqus software.

Four standard friction model parameters have been
identified by direct friction force measurement. In the present
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ongoing work an indirect approach, based on acceleration
measurement, has been proposed [15–17]. To identify the
friction model parameters experimentally using this indirect
method, accurate nonlinear normal modes are needed.
Nonlinear normal modes (NNMs) and the principle of in-
verse harmonic balance (IHB) based on the harmonic balance
(HB) method [18] were developed and presented in previous
work [15–17].

In the previous work [15–17], the parameters of the Dahl
[9] and LuGre [19] friction models, which are, respectively,
based on Coulomb and Stribeck friction models were re-
ported. In this paper, therefore, we analyze these two friction
models to validate their friction coefficients identified also in
the work [15], where the basic friction models identified
parameters have been used to identify the parameters of the
more complex models.

2. Principle of the Inverse Harmonic Balance
(IHB) Method

Figure 1 shows a schematic of the test rig used to extract the
contact force (friction and impact) and displacement. *e
specimen is a beam simply supported at one end (but
allowing sliding hence friction effects) and clamped at the
other. In Figure 2 all the forces acting at the contact point are
represented; for more details see [15–17, 20].

*e beam equation of motion is

ρA €y(x, t) + EIy″″(x, t)−T(t)y″(x, t) � F(t)δ x−Xf( ,

(1)

with the following boundary conditions:

x � 0 :

y(0, t) � 0,

y′(0, t) � 0,

⎧⎪⎪⎨

⎪⎪⎩

x � L :

EIy″(L, t) � r +
e

2
 T(t),

EIy‴(L, t) � −N(t) + m €y(L, t).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

*e characteristics of the beam are presented in Table 1
below. *e beam response is measured by six accelerome-
ters, where their type and position are cited in the previous
works [15–17].

Based on modal superposition, the response of the
system may be written in the following form:

yj xj, t  � 
n

i�1
ϕi xj qi(t), (3)

where qi(t) (i � 1, 2, . . . , n) are the generalized co-
ordinates, ϕi(x) (i � 1, 2, . . . , n) are the normal modes of
the system.

Using the modal superposition principle, equation
(3), the boundary conditions equations, equation (2), and
the Galerkin method, equation (1) can be rewritten as
follows:

€qi(t) + ω2
i qi(t)−F(t)ϕi Xf( 

� −N(t)ϕi(L) + ⎡⎣rϕ′i(L) + 
n

j�1
qj(t)

· 
L

0
ϕ″j(x)ϕi(x)dx−ϕ′i(L)ϕj(L) ⎤⎦T(t),

i � 1− n,

(4)

where N(t) � P−R(t)

Modal orthogonality may be expressed as follows:

ρA 
L

0 ϕi(x, a)ϕj(x, a)dx + mϕi(L, a)ϕj(L, a) � δij,

EI 
L

0 ϕ
″
ı̀ (x, a)ϕ″j(x, a)dx � ω2

i δij,

⎧⎪⎨

⎪⎩

(5)

and m is the half cylinder mass (contact element).
In our previous work, different methods were proposed

to identify the nonlinear normal modes (NNMs). Here, we
present only a summary of the most accurate method,
where the NNMs are computed based on the coupled
subharmonic approach. *e NNMs are calculated in the
following manner:

y

x

P
F (t) r

L

Xf

E, I, ρ

Figure 1: Schematic of a nonlinear beam [17].

x

M V

P
Y(x,t)

R(t)
T(t)

r

Figure 2: Forces acting at the contact point [17].

Table 1: Finite element model characteristics.

Property Symbol Quantity Units
Young’s modulus E 210 GPa
Density ρ 7800 kg/m3

Length L 606 mm
Width l 38.88 mm
*ick e 4.78 mm
Radius r 5 mm
Damping ratio ζ1 0.01 %
Proportional mass damping α1 0.06
Normal force N 83 N
Excitation force amplitude Fex 6.5 N
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Firstly, the Fourier series of the response signal is written
as follows:

yj xj, t  � 
n

r�1
αrj xj cos r · ωextt( 

+ 
n

r�1
βrj xj sin r · ωextt( .

(6)

Next this equation is written as

yj xj, t  � 

n

r�1

ϕir1 xj cr1 cos r · ωextt( 

+ 
n

r�1

ϕir2 xj cr2 sin r · ωextt( ,

(7)

€qir1(t) � cr1 cos r · ωextt( ,

€qir2(t) � cr2 sin r · ωextt( ,

⎧⎪⎨

⎪⎩
(8)

ϕir1 xj  �
αrj xj 

cr1
,

ϕir2 xj  �
βrj xj 

cr2
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

where ϕir1 is the first subharmonic form (or cosines sub-
harmonic form) and ϕir2 is the second subharmonic form (or
sine subharmonic form). *e modal equation of motion
(equation (4)) becomes



n

s�1
arsk

€qisk(t) + arsl
€qisl(t)  + brsk

qik(t) + brsl
qil(t)( 

−F(t)ϕirk Xf(  � −N(t)ϕirk(L) + ⎛⎝ 

n

s�1

qis1(t)

· 
L

0

ϕ
″

is1(x)ϕirk(x)dx +(r +(e/2))ϕ
′

irk(L)

+ 

n

s�1

qis2(t) 
L

0
ϕ″is2(x)ϕirk(x)dx

−⎛⎝ 

n

s�1

ϕ
′

is1(L)qis1(t)

+ 
n

s�1

ϕ
′

is2(L)qis2(t)⎞⎠ϕirk(L)⎞⎠T(t)
r�1−n

,

(10)

where k and l are the subharmonic form indices; k rep-
resents the subharmonic form index used to normalize the
modal equation of motion (equation (10)) (as the test
function of Galerkin method [21]), and l is the second
subharmonic form. *e values of k and l can be chosen as
follows: k � 1 (first subharmonic form), l � 2 (second
subharmonic form) or k � 2, l � 1. In the present work, k �

1 and l � 2 were chosen. *e modal orthogonality equation
(5) becomes

ρA 
L

0
ϕisk(x, a)ϕirk(x, a)dx + mϕirk(L, a)ϕisk(L, a) � arsk,

EI 
L

0
ϕ
″

ı̀rk(x, a)ϕ
″

isk(x, a)dx � brsk,

⎧⎪⎨

⎪⎩

(11)

ρA 
L

0
ϕisk(x, a)ϕirl(x, a)dx + mϕirk(L, a)ϕisl(L, a) � arsl,

EI 
L

0
ϕ
″

ı̀rk(x, a)ϕ
″

isl(x, a)dx � brsl,

⎧⎪⎨

⎪⎩

(12)

where
arrk � δrs,

arrl � δrs.
 (13)

Equations (8) and (9) are used to calculate cr1 and cr2 by
the normalization of ϕirk from αrj and βrj. Equation (13) is
used in the harmonic forms normalization.

Finally, the nonlinear normal modes ϕir1(x) and ϕir2(x)

can be represented by a natural smoothing spline or a series
of trigonometric functions (equation (14)):

ϕir(x) � 
n

k�1
aik1 sin βikx(  + aik2sinh βikx(  + aik3 cos βikx( 

+ aik4cosh βikx( ,

(14)

where n is chosen equal to 3 to minimize the fitting error.

3. Friction Models

Coulomb and decay friction models are widely used in
finite element (FEM) software. In previous work [22], we
analyzed these two friction models and validated the
friction coefficient identified experimentally in the works
[16, 17] using a 1D element. *e results showed that the
1D element is not capable of modeling the contact
problem with friction. Following the improvement of the
inverse harmonic balance method [15], five new param-
eters of the hybrid friction model were reidentified using
the newly calculated experimental results. In the present
work, we analyze the different implementations of these
models to validate the friction coefficient identified ex-
perimentally in [15] using a plane stress element. Firstly,
we present the principles and formulation of FEM friction
models.

3.1. Coulomb Friction Model. In the Coulomb friction
model, the friction force is computed in an analytical
formulation:

T �
μcN(−sig(v)), if v≠ 0,

RT, if v � 0,
 (15)

where μc is the kinetic friction coefficient, N is the resultant
of the normal forces at the contact point, v the velocity at the
contact point, and RT is the resultant of the tangential force
at the contact point in the sliding direction.

Shock and Vibration 3



Generally, in the sticking regime, the resultant of the
tangential force RT is less than the kinetic friction force μcN.
*e sliding regime begins when the resultant of the tan-
gential force reaches and surpasses this limit (RT≥ μcN).
*is formulation is computed using the Lagrange method in
the FEM software Abaqus [12, 23]. *e formulation of the
Coulomb friction model using the penalty method in
Abaqus is similar in form to the Karnopp friction model [7]
or the velocity-limited friction model [3]. *e latter is used
to model the sticking (or presliding) regime (called the
“elastic slip” regime in Abaqus [12, 24]). *e Coulomb
friction model with a FEM penalty formulation is given by

T �

ksu, if u≤ ucrit,

μcN(−sig(v)), if u> ucrit,

⎧⎪⎨

⎪⎩
(16)

ks �
Tcrit

ucrit
, (17)

Tcrit � μcN, (18)

where Tcrit is the critical friction force and ucrit the critical
elastic slip.

In general, ks or ucrit is defined by the user in most FEM
software. However, in Abaqus, there are two options to
define the limiting values: in the first, ks or ucrit are defined
by the user (as above), while in the second, automatic option,
ucrit is calculated during the simulations using the formula:

ucrit � Ff li, (19)

where li is the characteristic contact surface length and Ff is
the slip tolerance; the default value, Ff � 0.005 [12].

*e slip tolerance Ff is also defined as the maximum
allowable “elastic slip” (presliding displacement),
expressed as a fraction of a characteristic length. *e
characteristic length is the average length of the contact
surface elements (half cylinder). A value of 0.5% is
considered typical and used by default in the code. Al-
ternatively, an absolute value (e.g., based on known ex-
perimental values) of the characteristic length may be
specified. Note that the “elastic slip” is, strictly, not slip at
all but rather refers to a relative presliding displacement
between the contact surfaces. *e relative surface dis-
placement is possible due the contact area asperities which
deform elastically without breaking. Gross slip occurs
once all the asperities are broken.

3.2. Decay Friction Model (Stribeck Friction Model). *e
decay friction model is a special case of the Stribeck friction
model [4] (equation (20)), with the exponent δ is equal to
one. Equation (20) represents the general Stribeck friction
model [4] in the slip regime. However, in the presliding (or
elastic slip) regime, the friction force takes the same value in
equations (16)–(18) with the replacement of μc by μs in these
equations (16) and (18):

T � N μc + μs − μc( e
− v/]s( )

δ

 (−sig(v)), (20)

where μs is the static friction coefficient, vs is the Stribeck
velocity, and δ is the Stribeck exponent.

To validate the friction model parameters using a FEM
code, we must validate the other parameters used as well
as the contact algorithms (surface to surface or nodes to
surface) and the slip tolerance Ff . In the present work, the
surface-to-surface contact algorithm with the hard contact
model is considered. One of the important parameters in-
vestigated is the slip tolerance Ff .

3.3.HybridFrictionModel. *is paper presents intermediate
results in a longer-term project on hybrid friction model
parameter identification and validation using the simple
friction models used to create the general hybrid friction
model.

In the previous work [15], five parameters of the hybrid
friction model were identified using Dahl [9] and LuGre
friction models [19]. Some of these parameters are the same as
those of the Coulomb and decay (Stribeck) friction model.
Starting then with these simpler models, some of the chal-
lenges associated with FEM-based parameter identification
have been highlighted. Importantly, it is clear that friction
models, as implemented in commercial FEM codes, should be
used with caution. When quantities intimately related to the
details of the friction model are considered, the resulting
physical outputsmay be significantly affected and far from true
values. For instance, the slip tolerance is an adjustable pa-
rameter that is found in the numerical friction models. *is
parameter has, however, been found to have little effect on the
computed friction force and displacement when physically
realistic values are used.

*e hybrid friction model [1, 8] (Figure 3) is based on the
principle of the LuGre model [19]. All properties and benefits
of other frictionmodels are included, namely, the dynamics of
the Dahl model [9] (i.e., hysteresis effect), the dynamics of
bristles [10], and the Stribeck effect [4]. *is model also takes
into account the distribution of the stresses in the contact area
according to the principle of Cattaneo–Mindlin [11] to model
the presliding phenomenon.

*e formulation of the hybrid friction model [1] is
represented in the following equations:

T � keze + cp _zp + cs _zs,

keze + kep ze − zp  � 0,

kep zp − ze  + kps zp − zs  + cp _zp � 0,

kps zp − zs  + cz _zs − _x(  + cs _zs � 0,

(21)

where ze, zp, and zs are, respectively, the elastic, plastic, and
partial slip relative displacements. *e presliding or sticking
regime is modeled by stiffness ke, plastic damping cp and
presliding damping cs, and two transition stiffness co-
efficients, elastic-plastic kep and plastic presliding kps, and
the slip regime is modeled by the coefficients of the Stribeck
damping cz which is given by

4 Shock and Vibration



cz �
σ0g( _x)

_x
, (22)

σ0g( _x) � N μc + μs − μc( e
− _x/]s( )

2

 , (23)

where g( _x) is the Stribeck function (or Stribeck friction
model [4]), μc is the kinetic friction coefficient, μs is the static
friction coefficient, and vs is the Stribeck velocity.

4. Numerical Simulation

4.1. Finite Element Modeling. In previous work [22], a 1D
FEM model (Figure 4(a)) was used to validate the friction
coefficient identified experimentally in the works [16, 17].
*is model was also compared and validated using the 2D
and 3D models. However, in this work, the beam of
Figure 1 is modeled by 2D elements FEM model
(Figure 4(b)). *en, in conjunction with the friction
models presented above, it is used to validate the friction
coefficient identified experimentally in the previous work
[15]. *e beam is discretized using 2D plane strain ele-
ments. *e validation of this FEM model is done using a
multistep mesh analysis. *is includes (i) cantilever beam
end static deflection calculation, (ii) modal analysis, and
(iii) model size optimization. However, only the modal
analysis and the model size (calculation time) were used in
the choice of the meshing method and the element size of
the half-cylinder (contact element). *e results of this
analysis are presented in Figures 5 and 6. *e description
of the elements presented in legend of those figures is
defined in Table 2.

In general, the triangular elements are the most com-
monly used to mesh the cylindrical form because of geo-
metrical compatibility. On the other hand, we have solved
the problem of the quadrilateral elements’ incompatibility
for this geometry type by dividing the circular section of the
cylinder into four parts. *is means that our contact ele-
ment (half cylinder) should be divided in two parts (two
quarter cylinders) (Figure 4(b)). *e other contacting
surface is a rigid surface for both models.

4.2. Finite Element Model Validation. *ese analyses are
necessary in this work to optimize our model mesh to reduce
the simulation time. For example, using our optimal mesh
(Figure 4(b)), the simulation for each iteration (one fre-
quency excitation of 1.2 seconds using direct implicit dy-
namic integration) takes 90 minutes using a PC having an
Intel i7 3GHz CPU and 24GB RAM. To obtain one case of
parameters analysis results this translates to 30 hours.

Figures 5 and 6 show that the quadrilateral elements give
better results than triangular elements, in both objectives
cases analysis (deflection the beam free end, and a modal
analysis) using the cantilever beam. *e CPS4I (4-node
bilinear quadrilateral with incompatible modes) element is
the best among all the elements for both cases. For this
reason, the element type was chosen to model the beam and
the half cylinder (the contact element). *e triangular ele-
ment form is the most commonly used to model the cy-
lindrical structure. In the half cylinder element (contact
element) meshing analysis, the solutions adopted to obtain
the best results are to divide the half cylinder in two parts
making it possible to use the CPS4I element for this ge-
ometry, and maintain a space ratio less than two to optimize
the number of elements with bias mesh controller con-
centrated in the contact zone.

*e characteristics of the beam modeled by FEM are
presented in Table 1. *e friction model parameters are
presented in Table 3. *e parameters μc, μs, and vs in
equation (23) were identified experimentally using the Dahl
friction model [9] and LuGre friction model [19]. *ese
models are detailed in the previous works [15–17]. *e
objective function previously used for parameter identifi-
cation is that given in equation (24). Optimization based on
an objective function is used to validate the simulation
results here as well. *e objective function is more general
than the more commonly used simpler form employed
previously in [17]. *is objective function is more useful to
compare signals with different behaviors such as the ap-
pearance of the beating phenomenon in one response signal
or of signals having different offsets (difference between the
min/max values).
Obj

�
max Texp. −min Texp. 



−
max( Tsuml.−min( Tsuml.

 

2
,

(24)

where Obj is the objective function, Texp. the experimental
friction force, and Tsuml. the simulated friction force.

All the results are obtained at the excitation force am-
plitude of 6.5 N. A proportional (Rayleigh) damping is used
to model the beam structural damping. *e mass pro-
portional damping coefficient αn is given by the following
equation:

αn � 2ωnζn, (25)

where ωn is the angular natural frequency of mode n and ζn

the corresponding damping ratio.

Cp

Cz

Cs

ke kep

kps

Zp

Ze

Zs

X

Figure 3: Schematic of the hybrid friction model [8].
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*e value of the damping ratio ζ in Table 1 is identified
experimentally using an impact test and the logarithmic
decrement method.

5. Parameter Validation

All the results of the simulation are obtained using the
software Abaqus version 6.12-3. Simulations are carried out
for 1.2 seconds, with a 10−4 second fixed time step, using the
implicit integration method. Data storage was done in 8 ×

10−4 second time intervals in order to optimize the total
simulation time. Two models were tested, the Coulomb
friction model with two different formulations and Lagrange
and Penalty formulations, and the decay friction model. We
begin by presenting the modal analysis results.

Table 4 presents the first resonance frequency. *e sim-
ulations using the two Coulomb (Lagrange and penalty)

models give approximately equal first resonance frequencies
(with a difference of 0.2Hz); the predicted frequencies are
approximately 3Hz higher than the experimental frequency
of 50Hz. However, the decay friction model is closest to the
experimental results when compared to the Coulombmodels.
For the resonance frequency, the Lagrange formulation is
better than penalty formulation, while the decay friction
model frequencies are the closest to the experimental values.

In the following figures, from Figures 7–13, the simu-
lations of two cases for each Coulomb friction model for-
mulation are presented. For the Lagrange formulation,
simulations using the two friction coefficients identified via
Coulomb and LuGre friction models (Table 3) are presented.
However, for the penalty formulation, we present the
simulation results obtained using the friction coefficient
identified via the Coulomb model with two values of the slip
tolerance (Ff ): the default value (0.005) and the optimal

(a)

(b)

Figure 4: Beam meshing: (a) 1D model; (b) 2D model.
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value (0.0015) identified during this analysis using the beam
response envelope validation criterion.

Figure 7 presents the first nonlinear normal mode
(NNM). Simulation results are compared with the experi-
mental normal modes identified using the inverse harmonic
balance method (IHB) and the linear normal mode (LNM)
of the clamped-simply supported beam. *e simulation
results using both friction models have approximately the
same NNMs; the NNM form is also very close to the first
NNM identified experimentally using the IHB. However, the

NNMof the simulation results using the penalty formulation
are even closer to the experiments NNM compared to the
Lagrange formulation results.

Note that while the simulated 1st nonlinear modes
(NNMs) appear similar to the experimental NNM, the small
difference is important. *is is because the modal spatial
derivatives are particularly critical for accurate determination
of the friction dynamics at the contact point; this is evident in
equation (10). Hence, even though the NNMs look similar,
the slight differences lead to significantly different responses
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Figure 5: Cantilever beam end deflection (b); zoom-in of the superimposed lines in (a).
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(Figure 8).*is is largely due to the importance of the first and
the second derivatives of the mode form at the contact point
which directly affects the resulting computed friction force
T(t) in equations (4) and (10).

To better compare the results, we can use data shown in
Figure 8. In this figure, the beam response envelopes
(maximal deflections) using both formulations of the
Coulomb friction model are presented. From Figure 8(a),
Coulomb friction model with the Lagrange formulation, we
find that the friction coefficient identified using the LuGre
model μc � 0.49 yields the closer results to experiments than
the value identified using the Coulomb friction model.
Contrarywise for the penalty formulation (Figure 8(b)), the
value identified using the Coulomb friction model
(μc � 0.52) gave the best results but with the optimal value of
the slip tolerance(Ff � 0.0015). *e default value of the slip
tolerance is unable to produce the correct results.

To provide more details on the beam response, the
frequency response (FRF) of the system at the driving point
(position 555mm from the clamped end) is presented in
Figure 9 for the Coulomb and decay friction models.
Similarly to the observations made from Figure 8, the case
with μc � 0.49 for the Coulomb friction model with

Lagrange formulation (Figure 9(a)) and the case with (μc �

0.52, Ff � 0.0015) for the penalty formulation (Figure 9(b))
are the closest results to the experimental response. *ese
two cases can be considered as the optimal cases (having
optimal parameters) for each model formulation.

From Figure 9, we can also observe that the penalty for-
mulation gives smooth system response (without multiple-
resonance peaks phenomenon), in the interval 45–56Hz,
compared to the Lagrange formulation, where this phe-
nomenon is not observed experimentally in the interval (from
45Hz up to the second natural frequency (160Hz)). However,
for both formulations, there are other resonances above
56Hz, while not presented in the results, we can see the
beginning of a second possible resonance after the 1st natural
frequency in Figure 9(b). Furthermore, the experimental
response occurs over a wider frequency bandwidth. *e
large response predicted by the Coulomb friction model
with both formulations shows that the models do not
correctly capture the energy dissipation due to friction.
*is is partly expected due to the known inadequacies of
the Coulomb friction model.

Note, however, that there is gradual improvement in the
predictive behavior between the more basic Coulomb and
the improved decay friction model.*e preliminary result of
decay friction model peak frequency, in general, is closer to
the experimental resonance frequency value than Coulomb
model (Table 3); however, the beam response amplitude
(Figure 9(c)) is higher than the experimental result. *e
results of Figure 9(c) are obtained using the optimal pa-
rameters of the penalty formulation (μs � 0.52, Ff � 0.0015)

and the optimal value of μc � 0.16 presented in Table 3 from
the previous work [15] with the Abaqus decay friction
model. In the next step, a complete analysis of the decay and
Stribeck models must be done to improve our decay friction
model.

Figures 10 and 11 present the slip displacement and slip
velocity at the contact point. For both formulations, the
simulated resonance slip displacement (Figure 10) of the
optimal parameters defined above: (μc � 0.49) for Lagrange
formulation and (μc � 0.52, Ff � 0.0015) for penalty for-
mulation, leads to the closest values to experimental results.
However, all the simulated resonance slip velocities at the
contact point (Figure 11), for both formulations, are higher
than the experimental values. *is may come from the
integration and the derivative methods used in Abaqus
and/or due the inability of the Coulomb friction model to
represent the real behavior of friction especially in the
sticking condition. *us, for both formulations at low
frequencies, below the resonance, the system is in the
sticking condition (zero slip displacement for the Lagrange
formulation and slip displacement equal to the critical
displacement for the penalty formulation). For the higher
frequencies above the 1st resonance frequency, the slip
displacement (Figure 10) values are closer to the experi-
mental values. *e slip velocity (as shown in Figure 11) for
the Lagrange formulation is higher than the penalty for-
mulation case. Both formulations thus give higher results
with the penalty formulation being 1.5 times the experi-
mental values.

Table 2: Abaqus plane strain elements type.

Element
symbol Descriptions

CPS4 4-node bilinear quadrilateral element

CPS4R 4-node bilinear quadrilateral element with reduced
integration

CPS4I 4-node bilinear quadrilateral with incompatible modes
CPS8 8-node biquadratic quadrilateral element

CPS8R 8-node quadrilateral biquadratic element with reduced
integration

CPS3 3-node triangle bilinear
CPS6 6-node triangle biquadratic
CPS6M 6-node modified biquadratic triangle element

Table 4: 1st resonance frequency.

Test 1st resonance frequency (Hz)
Experimental 50
Coulomb–Lagrange formulation 52.8
Coulomb-penalty formulation 53
Stribeck (δ � 1) friction model 51.6

Table 3: Friction models parameters (6.5 N) [15].

Parameter
Coulomb
friction
model

Dahl
friction
model

Stribeck
friction
model

LuGre
friction
model

μc 0.520 0.500 0.161 0.160
μs — — 0.477 0.492
vs (m/s) — — 6.101 10−4 7.152 10−4

ucrit (m) — — 4.146 10−6 4.060 10−6

σ0 (N/m) — 1.003 10+7 — 1.140 10+4

σ1 (N·s/m) — — — 347.030
σ2 (N·s/m) — — — 0.000
δ 2

8 Shock and Vibration



We can also make the same observations in Figure 8,
where for the beam frequency response at the driving point,
for the low frequencies, the difference between the simu-
lations and the experimental results is quite large. However,
for the higher frequencies (above the resonance frequency),
there is a good match between the simulations and the
experimental results. We conclude that the Coulomb
friction model is valid and applicable only for the cases with
slipping conditions. Despite the penalty formulation im-
provement, the Coulomb friction model accuracy remains
insufficient to represent the real behavior of the sticking or
presliding condition.

Figures 12 and 13 present the contact force, tangential
(friction) force, and normal (impact) force results. *e
friction force results, Figure 12, support the conclusion
above for both formulations. *e simulated friction force
levels at the resonance frequency have closest values to the
experimental results when the optimal parameters defined

above are used. However, the simulated normal force levels
obtained using the optimal parameters (Figure 13) at the
resonance frequency are slightly higher than the experi-
mental values, with an error of 4.39N (4.93%) for the
Lagrange formulation and 3.56N (4%) for the penalty
formulation. *us, even when the results of the friction
force, the system response, and the slip displacement are
close to the experimental values, both formulations of the
Coulomb model lead to slightly different values for the
normal force. *e continuous nature of the penalty for-
mulation slightly improves the normal force result com-
pared to the discontinuous Lagrange formulation.

Finally, we can use these results (Figures 8, 9, and 11) to
obtain the optimal Coulomb friction model parameters for
the FEM model. *e optimal parameters are (Ff between
0.0015 and 0.005 with μc � 0.52) for the penalty formulation.
For the Lagrange formulation, μc is less than 0.49 for the
response system validation criterion and between 0.52 and
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0.49 for the others validation criteria. In conclusion, we note
that the accurate optimal parameters of the different Cou-
lomb frictionmodel formulations affect the system response,
the friction force, and the slip displacement in the same
manner and differently to the normal force.

6. Parameter Sensitivity Analysis

In this section, we investigate the parameter sensitivity of the
two Coulomb frictionmodel formulations. In Figures 14–19,
we present the simulation results using the parameters of the
two cases presented in Figure 7 to Figure 13 plus other cases
near the optimal parameters of both formulations. However,
we present only the figures (or the validation criteria) where
the parameter variation effect is clear. Furthermore, the
sensitivity of the two parameters in the penalty formulation
is presented separately: subpart “b” in Figures 14–19 for the
slip tolerance Ff analysis and subpart “c” in Figures 14–19
for the friction coefficient μc analysis.

In the Lagrange formulation (Figure 14(a)), when the
optimal parameter (μc � 0.49) is increased by 2%, the beam
response envelope decreases by 17% relative to the optimal
parameter response. However, the beam response envelope
increases by 28% of the optimal parameters response when
μc is decreased by 2% below the optimal value μc � 0.49.

For the penalty formulation (Figures 14(b) and 14(c)),
firstly, the slip tolerance Ff sensitivity was tested by fixing
the friction coefficient μc at 0.52 (Figure 14(b)). It was found
that the beam response envelope increased with increasing
slip tolerance Ff (which means with increasing critical dis-
placement ucrit). Additionally, it was noted that the optimal
slip tolerance Ff could be improved within the interval
(0.0011 to 0.0015) by using the experimentally identified
μc � 0.52. *e friction coefficient μc sensitivity was also
tested (Figure 14(c)) by fixing the slip tolerance Ff to two
values: the default value (Ff � 0.0050) and the optimal
value (Ff � 0.0015). *ese two cases are analyzed to un-
derstand the behavior of the μc variation. It was found that
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Figure 9: FRF at driving point, Coulomb friction model: (a) Lagrange formulation, (b) penalty formulation, and (c) decay friction model.
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the beam response envelope increased with decreasing μc
for both cases.

*e same approach was used to analyze the other criteria
presented in Figures 13–17.

For the following two criteria, FRF at driving point
(Figure 15) and slip displacement (Figure 16), the obser-
vations of the parameters sensitivity are similar to the beam
response envelope (Figure 14) where, the simulation result
values increase with decreasing μc for both criteria using
both formulations (Figures 15(a), 15(c), 16(a), and 16(c)),
and the simulated values increase with increasing Ff for

the penalty formulation. Furthermore, for the penalty for-
mulation, using the slip tolerance optimal value Ff � 0.0015,
the simulation result approaches the experimental value,
unlike the case using the default value (Ff � 0.0050), with
the appearance of a multi resonance, confirming the stability
response of the slip tolerance Ff optimal value.

For the slip velocity criterion (Figure 17), the observa-
tions of the parameters sensitivity are similar as the FRF at
driving point (Figure 15) and slip displacement (Figure 16)
for the penalty formulation (Figures 17(b) and 17(c)).
However, for the Lagrange formulation, the simulated slip
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Figure 10: Slip displacement: (a) Lagrange formulation; (b) penalty formulation.
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Figure 11: Slip velocity: (a) Lagrange formulation; (b) penalty formulation.
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tolerance (Figure 17(a)) behaves differently around the
optimal friction coefficient, μc � 0.49. *e simulated value
increases away from the experiment at value for increasing
or decreasing friction coefficient μc. *is is another con-
firmation that μc � 0.49 is the optimal value for the Lagrange
formulation.

For the following two criteria, the friction force (Fig-
ure 18) and the normal force (Figure 19), the simulation
values decrease for decreasing μc in the Lagrange formu-
lation (Figures 18(a) and 19(a)) and also by decreasing Ff
using the penalty formulation (Figures 18(b) and 19(b)).
Furthermore, for the penalty formulation, using the default

slip tolerance Ff leads to values far from the experiments,
and there is a small difference for the values around the
optimal value Ff � 0.0015. For the penalty formulation, the
friction force (Figure 18(c)) increases with increasing fric-
tion coefficient μc. However, the normal force (Figure 19(c))
decreases with increasing μc using the optimal value
μc � 0.52, which leads to the closest values in experiments
for both criteria.

Finally, we conclude from this analysis that using the op-
timal parameter values (μc � 0.49 for the Lagrange formulation
and Ff � 0.0015 with μc � 0.52 for the penalty formulation)
yields the smoothest (the most stable) simulated results and
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Figure 12: Friction force: (a) Lagrange formulation; (b) penalty formulation.

46 48 50 52 54 56
88.5

89

89.5

90

90.5

91

91.5

92

92.5

93

93.5

94

Frequency (Hz)

N
or

m
al

 fo
rc

e m
ax

 (N
)

Exp. resonance value

Sim. resonance value

μc = 0.52
μc = 0.49
Experimental IHB

(a)

46 48 50 52 54 56
88

89

90

91

92

93

94

95

96

Frequency (Hz)

N
or

m
al

 fo
rc

e m
ax

 (N
)

Exp. resonance value

Sim. resonance value

μc = 0.52, Ff = 0.0050
μc = 0.52, Ff = 0.0015

(b)

Figure 13: Contact normal force: (a) Lagrange formulation; (b) penalty formulation.
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Figure 14: Beam response envelope (deflation maximal): (a) Lagrange formulation and penalty formulation; (b) Ff sensitivity; (c) μc
sensitivity.
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Figure 15: FRF at driving point: (a) Lagrange formulation and penalty formulation; (b) Ff sensitivity; (c) μc sensitivity.
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Figure 16: Slip displacement: (a) Lagrange formulation and penalty formulation; (b) Ff sensitivity; (c) μc sensitivity.
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Figure 17: Slip velocity: (a) Lagrange formulation and penalty formulation; (b) Ff sensitivity; (c) μc sensitivity.
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Figure 18: Continued.
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Figure 18: Friction force: (a) Lagrange formulation and penalty formulation; (b) Ff sensitivity; (c) μc sensitivity.
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Figure 19: Contact normal force: (a) Lagrange formulation and penalty formulation; (b) Ff sensitivity; (c) μc sensitivity.
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the closest to experimental values for the six validation crite-
ria presented above. *is validates and confirms the accuracy of
the friction model parameters identified using the inverse
harmonic balance method IHB with LuGre model for the
Lagrange formulation and with Coulomb friction model for
the penalty formulation. We can conclude also that the accu-
rate optimal parameters of the different Coulomb friction
model formulations affect the system response, the slip dis-
placement, and the slip velocity in the samemanner.*e friction
force and normal forces are affected differently.

We can use the results of Figures 7–18 to obtain the best
(optimal) Coulomb friction model parameters for the FEM
model. *e optimal parameters are for Ff between 0.0015
and 0.0020 with μc � 0.52 for the penalty formulation and μc
between 0.48 and 0.49 for the Lagrange formulation.

*e friction coefficient identified experimentally using
the Coulomb model is the optimal value for the penalty
formulation of the Coulomb model. However, the friction
coefficient identified experimentally, using the LuGre fric-
tion model, is the optimal value for the Lagrange formu-
lation of the Coulomb model. *is can be generalized only
after testing different cases in future work.

Modeling the Stribeck effect also significantly improves
the resonance frequency prediction. *e next step involves
moving to more sophisticated models—the Dahl, LuGre,
and, eventually, the Hybrid friction models. Prior to this, the
role played by the numerical implementation of these
models in the FEM codes needs to be verified. *is is im-
portant because the implementation of the frictionmodels in
FEM codes is not mathematically trivial and involves ad-
justments and additional parameters.

Finally, a word concerning the slip displacement: this
displacement is an important quantity used to calculate the
wear work rate (26). *e slip displacement value at the
contact point is plotted versus frequency in Figures 10 and
16 for the Coulomb model. *e values of the slip dis-
placement generated by the Coulomb friction model are
close to the experimental ones at resonance and too small
(even equal to zero for the Lagrange formulation) for fre-
quencies lower than the resonance frequency. *is leads to
smaller computed work rates compared to the experimental
values in this frequency interval.

_W �


t

0 N(t) · _u(t)dτ


t

0 dτ
, (26)

where _W is the work rate, N(t) is the normal force, _u(t) is
the sliding velocity, and t is the duration of contact.

7. Conclusion

*is paper presents the first step to validate, using 2D plane
strain FEM elements, the parameters identified in previous
work [15] using the inverse harmonic balance method re-
sults and the basic models of the hybrid friction model.

*e accuracy of the friction model parameters identified
using the inverse harmonic balance method (IHB) with the
LuGre model is validated using the Lagrange formulation.
*e parameters identified with Coulomb friction model are

validated using the penalty formulation. *e accuracy of the
optimal parameters of the different Coulomb friction model
formulations affects the system response, the slip displace-
ment, and the slip velocity in the same manner but differ-
ently from the friction and normal forces.

Both models produce friction forces, normal forces, and
slip displacements of the correct order of magnitude
compared to the friction force calculated using the inverse
harmonic balance method at the resonance frequency.
However, their FRF bandwidths are significantly far from
the experimental results. Furthermore, Coulomb and decay
friction models yield modal parameters (resonance fre-
quency and NNMs) that are close to those of the experi-
ments. *e decay friction model yields the results closest to
experiments for the NNMs and resonance frequency.

*e Coulomb friction model is valid and applicable
only for cases with slipping conditions. Despite the im-
provement gained using the penalty formulation in the
Coulomb friction model, it remains insufficiently accurate
to represent the real physical behavior for sticking or
presliding condition.

*e present work demonstrates that both static friction
models produce results closest to the experiments at reso-
nance in the slipping regime, but are incapable of accurately
representing all the behaviors of friction, especially in the
sticking regime, ultimately leading to incorrect work rate
estimates in the complete frequency range. *e results
presented here represent a part of ongoing work aimed at
modeling the detailed physics underlying friction.

Nomenclature

A: Area of the cross section of the beam
E: Young’s modulus
F: Excitation force by a shaker
Fc: Kinetic friction force limitation
Fex: Excitation force amplitude
Ff : Slip tolerance (fraction of characteristic contact

surface length)
Fs: Static friction force limitation
I: Quadratic bending moment
L: Length of the beam
N: Resultant of the normal force
Obj: Optimization objective function
P: Static load to ensure permanent contact between the

beam and support
R: Support reaction (“impact” force)
RT: Resultant of the force at the contact point in the

sliding direction
T: Frictional force
Tcrit: Critical friction force
Texp.: Experimental friction force
Tsuml.: Simulated friction force
Xf : Position of the excitation point
_W: Work rate

cp: Plastic damping
cs: Presliding damping
cz: Stribeck damping
e: *ickness of the beam
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g( _x): Stribeck function
ke: Elastic stiffness
kep: Elastic-plastic stiffness
kps: Plastic presliding stiffness
li: Characteristic contact surface length
m: Half cylinder mass (contact element)
n: Mode index
qi: Linear generalized coordinates
qi: Nonlinear generalized coordinates
r: Radius of the contact element (half cylinder)
(t): Time dependence
u: Displacement at the contact zone
ucrit: Elastic slip
xj: Position of the accelerometer j
(x): Position dependence
y: System response (beam deflection)
yj: System response of the accelerometer j
ze: Elastic slip relative displacements
zp: Plastic slip relative displacements
zs: Partial slip relative displacements
α: Proportional mass damping
αn: Proportional mass damping of mode n

δ: Stribeck exponent
ζ: Damping ratio
ζn: Damping ratio of mode n

μc: Kinetic friction coefficient
μs: Static friction coefficient
ρ: Density of the beam material
v: Velocity at the contact area
ϕi
: Linear normal modes

ϕi
: Nonlinear normal modes

ϕir1
: First subharmonic form or cosines subharmonic

form
ϕir2: Second subharmonic form or sine subharmonic

form
ωn: Natural frequency of mode n.
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