Andrea Lodi, Mathieu Tanneau et Juan Pablo Vielma
Rapport technique (2019)
Un lien externe est disponible pour ce documentAbstract
This paper studies disjunctive cutting planes in Mixed-Integer Conic Programming. Building on conic duality, we formulate a cut-generating conic program for separating disjunctive cuts, and investigate the impact of the normalization condition on its resolution. In particular, we show that a careful selection of normalization guarantees its solvability and conic strong duality. Then, we highlight the shortcomings of separating conic-infeasible points in an outer-approximation context, and propose conic extensions to the classical lifting and monoidal strengthening procedures. Finally, we assess the computational behavior of various normalization conditions in terms of gap closed, computing time and cut sparsity. In the process, we show that our approach is competitive with the internal lift-and-project cuts of a state-of-the-art solver.
Renseignements supplémentaires: | Groupe de recherche: CERC Datascience |
---|---|
Département: | Département de mathématiques et de génie industriel |
Centre de recherche: |
GERAD - Groupe d'études et de recherche en analyse des décisions Autre |
Organismes subventionnaires: | Mitacs Globalink - Research Award, Fonds de recherche du Québec - Nature et technologies (FRQNT) |
URL de PolyPublie: | https://publications.polymtl.ca/49123/ |
Numéro du rapport: | 2019-42 |
URL officielle: | https://www.gerad.ca/en/papers/G-2019-92 |
Date du dépôt: | 18 avr. 2023 15:02 |
Dernière modification: | 25 sept. 2024 16:38 |
Citer en APA 7: | Lodi, A., Tanneau, M., & Vielma, J. P. (2019). Disjunctive cuts for mixed-integer conic optimization. (Rapport technique n° 2019-42). https://www.gerad.ca/en/papers/G-2019-92 |
---|---|
Statistiques
Aucune statistique n'est disponible.