<  Retour au portail Polytechnique Montréal

Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy

Mohammad Sajjad Ghaemi, Daniel B. DiGiulio, Kévin Contrepois, Benjamin Callahan, Thuy T. M. Ngo, Brittany Lee-McMullen, Benoit Lehallier, Anna Robaczewska, David McIlwain, Yael Rosenberg-Hasson, Ronald J. Wong, Cecele Quaintance, Anthony Culos, Natalie Stanley, Athena Tanada, Amy Tsai, Dyani Gaudilliere, Edward Ganio, Xiaoyuan Han, Kazuo Ando, Leslie McNeil, Martha Tingle, Paul Wise, Ivana Maric, Marina Sirota, Tony Wyss-Coray, Virginia D. Winn, Maurice L. Druzin, Ronald Gibbs, Gary L. Darmstadt, David B. Lewis, Vahid Partovi Nia, Bruno Agard, Robert Tibshirani, Garry Nolan, Michael P. Snyder, David A. Relman, Stephen R. Quake, Gary M. Shaw, David K. Stevenson, Martin S. Angst, Brice Gaudilliere et Nima Aghaeepour

Article de revue (2019)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (555kB)
Afficher le résumé
Cacher le résumé

Abstract

Motivation: Multiple biological clocks govern a healthy pregnancy. These biological mechanisms produce immunologic, metabolomic, proteomic, genomic and microbiomic adaptations during the course of pregnancy. Modeling the chronology of these adaptations during full-term pregnancy provides the frameworks for future studies examining deviations implicated in pregnancy-related pathologies including preterm birth and preeclampsia. Results: We performed a multiomics analysis of 51 samples from 17 pregnant women, delivering at term. The datasets included measurements from the immunome, transcriptome, microbiome, proteome and metabolome of samples obtained simultaneously from the same patients. Multivariate predictive modeling using the Elastic Net (EN) algorithm was used to measure the ability of each dataset to predict gestational age. Using stacked generalization, these datasets were combined into a single model. This model not only significantly increased predictive power by combining all datasets, but also revealed novel interactions between different biological modalities. Future work includes expansion of the cohort to preterm-enriched populations and in vivo analysis of immune-modulating interventions based on the mechanisms identified. Availability and implementation: Datasets and scripts for reproduction of results are available through: https://nalab.stanford.edu/multiomics-pregnancy/. Supplementary information: Supplementary data are available at Bioinformatics online.

Mots clés

Computational Biology; Female; Humans; *Metabolome; *Microbiota; *Pregnancy; *Proteome; *Transcriptome

Sujet(s): 1600 Génie industriel > 1600 Génie industriel
9000 Sciences de la santé > 9000 Sciences de la santé
Département: Département de mathématiques et de génie industriel
Centre de recherche: CIRRELT - Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport
GERAD - Groupe d'études et de recherche en analyse des décisions
URL de PolyPublie: https://publications.polymtl.ca/4882/
Titre de la revue: Bioinformatics (vol. 35, no 1)
Maison d'édition: Oxford University Press
DOI: 10.1093/bioinformatics/bty537
URL officielle: https://doi.org/10.1093/bioinformatics/bty537
Date du dépôt: 05 avr. 2022 14:41
Dernière modification: 28 sept. 2024 00:03
Citer en APA 7: Ghaemi, M. S., DiGiulio, D. B., Contrepois, K., Callahan, B., Ngo, T. T. M., Lee-McMullen, B., Lehallier, B., Robaczewska, A., McIlwain, D., Rosenberg-Hasson, Y., Wong, R. J., Quaintance, C., Culos, A., Stanley, N., Tanada, A., Tsai, A., Gaudilliere, D., Ganio, E., Han, X., ... Aghaeepour, N. (2019). Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy. Bioinformatics, 35(1), 95-103. https://doi.org/10.1093/bioinformatics/bty537

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document