Mohammad Sajjad Ghaemi, Daniel B. DiGiulio, Kévin Contrepois, Benjamin Callahan, Thuy T. M. Ngo, Brittany Lee-McMullen, Benoit Lehallier, Anna Robaczewska, David McIlwain, Yael Rosenberg-Hasson, Ronald J. Wong, Cecele Quaintance, Anthony Culos, Natalie Stanley, Athena Tanada, Amy Tsai, Dyani Gaudilliere, Edward Ganio, Xiaoyuan Han, Kazuo Ando, Leslie McNeil, Martha Tingle, Paul Wise, Ivana Maric, Marina Sirota, Tony Wyss-Coray, Virginia D. Winn, Maurice L. Druzin, Ronald Gibbs, Gary L. Darmstadt, David B. Lewis, Vahid Partovi Nia, Bruno Agard, Robert Tibshirani, Garry Nolan, Michael P. Snyder, David A. Relman, Stephen R. Quake, Gary M. Shaw, David K. Stevenson, Martin S. Angst, Brice Gaudilliere et Nima Aghaeepour
Article de revue (2019)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (555kB) |
Abstract
Motivation: Multiple biological clocks govern a healthy pregnancy. These biological mechanisms produce immunologic, metabolomic, proteomic, genomic and microbiomic adaptations during the course of pregnancy. Modeling the chronology of these adaptations during full-term pregnancy provides the frameworks for future studies examining deviations implicated in pregnancy-related pathologies including preterm birth and preeclampsia. Results: We performed a multiomics analysis of 51 samples from 17 pregnant women, delivering at term. The datasets included measurements from the immunome, transcriptome, microbiome, proteome and metabolome of samples obtained simultaneously from the same patients. Multivariate predictive modeling using the Elastic Net (EN) algorithm was used to measure the ability of each dataset to predict gestational age. Using stacked generalization, these datasets were combined into a single model. This model not only significantly increased predictive power by combining all datasets, but also revealed novel interactions between different biological modalities. Future work includes expansion of the cohort to preterm-enriched populations and in vivo analysis of immune-modulating interventions based on the mechanisms identified. Availability and implementation: Datasets and scripts for reproduction of results are available through: https://nalab.stanford.edu/multiomics-pregnancy/. Supplementary information: Supplementary data are available at Bioinformatics online.
Mots clés
Computational Biology; Female; Humans; *Metabolome; *Microbiota; *Pregnancy; *Proteome; *Transcriptome
Sujet(s): |
1600 Génie industriel > 1600 Génie industriel 9000 Sciences de la santé > 9000 Sciences de la santé |
---|---|
Département: | Département de mathématiques et de génie industriel |
Centre de recherche: |
CIRRELT - Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport GERAD - Groupe d'études et de recherche en analyse des décisions |
URL de PolyPublie: | https://publications.polymtl.ca/4882/ |
Titre de la revue: | Bioinformatics (vol. 35, no 1) |
Maison d'édition: | Oxford University Press |
DOI: | 10.1093/bioinformatics/bty537 |
URL officielle: | https://doi.org/10.1093/bioinformatics/bty537 |
Date du dépôt: | 05 avr. 2022 14:41 |
Dernière modification: | 28 sept. 2024 00:03 |
Citer en APA 7: | Ghaemi, M. S., DiGiulio, D. B., Contrepois, K., Callahan, B., Ngo, T. T. M., Lee-McMullen, B., Lehallier, B., Robaczewska, A., McIlwain, D., Rosenberg-Hasson, Y., Wong, R. J., Quaintance, C., Culos, A., Stanley, N., Tanada, A., Tsai, A., Gaudilliere, D., Ganio, E., Han, X., ... Aghaeepour, N. (2019). Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy. Bioinformatics, 35(1), 95-103. https://doi.org/10.1093/bioinformatics/bty537 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions