<  Back to the Polytechnique Montréal portal

Three‐dimensional time‐lapse geoelectrical monitoring of water infiltration in an experimental mine waste rock pile

Adrien Dimech, Michel Chouteau, Michel Aubertin, Bruno Bussière, Vincent Martin and Benoît Plante

Article (2019)

[img]
Preview
Published Version
Terms of Use: Creative Commons Attribution Non-commercial No Derivatives .
Download (22MB)
Cite this document: Dimech, A., Chouteau, M., Aubertin, M., Bussière, B., Martin, V. & Plante, B. (2019). Three‐dimensional time‐lapse geoelectrical monitoring of water infiltration in an experimental mine waste rock pile. Vadose Zone Journal, 18(1). doi:10.2136/vzj2018.05.0098
Show abstract Hide abstract

Abstract

Open‐pit mines often generate large quantities of waste rocks that are usually stored in waste rock piles (WRPs). When the waste rocks contain reactive minerals (mainly sulfides), water and air circulation can lead to the generation of contaminated drainage. An experimental WRP was built at the Lac Tio mine (Canada) to validate a new disposal method that aims to limit water infiltration into reactive waste rocks. More specifically, a flow control layer was placed on top of the pile, which represents a typical bench level, to divert water toward the outer edge. Hydrogeological sensors and geophysical electrodes were installed for monitoring moisture distribution in the pile during infiltration events. A three‐dimensional (3D) time‐lapse hydrogeophysical monitoring program was conducted to assess water infiltration and movement. Readings from the 192 circular electrodes buried in the WRP were used to reconstruct the 3D bulk electrical resistivity (ER) variations over time. A significant effort was devoted to assessing the spatiotemporal evolution of water ER because the bulk ER is strongly affected by water quality (and content). The water ER was used as a tracer to monitor the infiltration and flow of resistive and conductive waters. The results indicate that the inclined surface layer efficiently diverts a large part of the added water away from the core of the pile. Local and global models of water infiltration explaining both bulk and water ER variations are proposed. The results shown here are consistent with hydrogeological data and provide additional insights to characterize the behavior of the pile.

Open Access document in PolyPublie
Subjects: 1400 Génie minier et minéral > 1400 Génie minier et minéral
1400 Génie minier et minéral > 1401 Génie minier
Department: Département des génies civil, géologique et des mines
Research Center: Autre
Funders: CRSNG/NSERC, Research Institute on Mines and the Environment (RIME)
Date Deposited: 13 Jul 2021 14:30
Last Modified: 14 Jul 2021 01:20
PolyPublie URL: https://publications.polymtl.ca/4847/
Document issued by the official publisher
Journal Title: Vadose Zone Journal (vol. 18, no. 1)
Publisher: Wiley
Official URL: https://doi.org/10.2136/vzj2018.05.0098

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Dimensions

Repository Staff Only