Hussain Ali, Sajid Ahmed, Tareq Y. Al-Naffouri, Mohammad S. Sharawi et Mohamed-S. Alouini
Article de revue (2017)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (507kB) |
Abstract
Conventional algorithms used for parameter estimation in colocated multiple-input-multiple-output (MIMO) radars require the inversion of the covariance matrix of the received spatial samples. In these algorithms, the number of received snapshots should be at least equal to the size of the covariance matrix. For large size MIMO antenna arrays, the inversion of the covariance matrix becomes computationally very expensive. Compressive sensing (CS) algorithms which do not require the inversion of the complete covariance matrix can be used for parameter estimation with fewer number of received snapshots. In this work, it is shown that the spatial formulation is best suitable for large MIMO arrays when CS algorithms are used. A temporal formulation is proposed which fits the CS algorithms framework, especially for small size MIMO arrays. A recently proposed low-complexity CS algorithm named support agnostic Bayesian matching pursuit (SABMP) is used to estimate target parameters for both spatial and temporal formulations for the unknown number of targets. The simulation results show the advantage of SABMP algorithm utilizing low number of snapshots and better parameter estimation for both small and large number of antenna elements. Moreover, it is shown by simulations that SABMP is more effective than other existing algorithms at high signal-to-noise ratio.
Mots clés
compressive sensing; mimo radar; colocated
Sujet(s): |
2500 Génie électrique et électronique > 2502 Électromagnétique, compatibilité et interférence 2500 Génie électrique et électronique > 2511 Antennes et propagation 2500 Génie électrique et électronique > 2522 Radars et navigation |
---|---|
Département: | Département de génie électrique |
Organismes subventionnaires: | King Abdullah University of Science and Technology (KAUST) - Office of competitive research funding (OCRF), King Fahd University of Petroleum and Minerals (KFUPM) - e Deanship of Scientific Research (DSR) |
Numéro de subvention: | KAUST-002 |
URL de PolyPublie: | https://publications.polymtl.ca/4744/ |
Titre de la revue: | EURASIP Journal on Advances in Signal Processing (vol. 2017, no 1) |
Maison d'édition: | BioMed Central Ltd |
DOI: | 10.1186/s13634-016-0436-x |
URL officielle: | https://doi.org/10.1186/s13634-016-0436-x |
Date du dépôt: | 14 déc. 2020 09:44 |
Dernière modification: | 26 sept. 2024 23:52 |
Citer en APA 7: | Ali, H., Ahmed, S., Al-Naffouri, T. Y., Sharawi, M. S., & Alouini, M.-S. (2017). Target parameter estimation for spatial and temporal formulations in MIMO radars using compressive sensing. EURASIP Journal on Advances in Signal Processing, 2017(1). https://doi.org/10.1186/s13634-016-0436-x |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions