<  Back to the Polytechnique Montréal portal

Maximum reward formulation in reinforcement learning

Sai Krishna Gottipati, Yashaswi Pathak, Rohan Nuttall, Sahir, Raviteja Chunduru, Ahmed Touati, Sriram Ganapathi Subramanian, Matthew E. Taylor and Sarath Chandar Anbil Parthipan

Paper (2020)

An external link is available for this item
Department: Department of Computer Engineering and Software Engineering
PolyPublie URL: https://publications.polymtl.ca/46904/
Conference Title: 2020 NeurIPS Deep RL Workshop
Conference Date(s): 2020-12-11
Official URL: https://drive.google.com/file/d/1GFMiR1ZrsXqDZiF19...
Date Deposited: 18 Apr 2023 15:00
Last Modified: 25 Sep 2024 16:35
Cite in APA 7: Gottipati, S. K., Pathak, Y., Nuttall, R., Sahir, Chunduru, R., Touati, A., Subramanian, S. G., Taylor, M. E., & Anbil Parthipan, S. C. (2020, December). Maximum reward formulation in reinforcement learning [Paper]. 2020 NeurIPS Deep RL Workshop (15 pages). https://drive.google.com/file/d/1GFMiR1ZrsXqDZiF19-As9FApUl4AaE4y/view?usp=sharing

Statistics

Stats are not available on this system.

Repository Staff Only

View Item View Item