<  Retour au portail Polytechnique Montréal

A machine learning framework for sleeping cell detection in a smart-city IoT telecommunications infrastructure

Orestes Gonzalo Manzanilla Salazar, Filippo Malandra, Hakim Mellah, Constant Wetté et Brunilde Sanso

Article de revue (2020)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (10MB)
Afficher le résumé
Cacher le résumé

Abstract

The smooth operation of largely deployed Internet of Things (IoT) applications will depend on, among other things, effective infrastructure failure detection. Access failures in wireless network Base Stations (BSs) produce a phenomenon called “sleeping cells”, which can render a cell catatonic without triggering any alarms or provoking immediate effects on cell performance, making them difficult to discover. To detect this kind of failure, we propose a Machine Learning (ML) framework based on the use of Key Performance Indicators (KPIs) statistics from the BS under study, as well as those of the neighboring BSs with propensity to have their performance affected by the failure. A simple way to define neighbors is to use adjacency in Voronoi diagrams. In this paper, we propose a much more realistic approach based on the nature of radio-propagation and the way devices choose the BS to which they send access requests. We gather data from large-scale simulators that use real location data for BSs and IoT devices and pose the detection problem as a supervised binary classification problem. We measure the effects on the detection performance by the size of time aggregations of the data, the level of traffic and the parameters of the neighborhood definition. The Extra Trees and Naive Bayes classifiers achieve Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) scores of 0.996 and 0.993, respectively, with False Positive Rates (FPRs) under 5%. The proposed framework holds potential for other pattern recognition tasks in smart-city wireless infrastructures, that would enable the monitoring, prediction and improvement of the Quality of Service (QoS) experienced by IoT applications.

Mots clés

Département: Département de génie électrique
Organismes subventionnaires: CRSNG/NSERC, Ericsson
Numéro de subvention: CRDPJ 520642
URL de PolyPublie: https://publications.polymtl.ca/45107/
Titre de la revue: IEEE Access (vol. 8)
Maison d'édition: IEEE
DOI: 10.1109/access.2020.2983383
URL officielle: https://doi.org/10.1109/access.2020.2983383
Date du dépôt: 18 avr. 2023 15:01
Dernière modification: 31 oct. 2025 10:17
Citer en APA 7: Manzanilla Salazar, O. G., Malandra, F., Mellah, H., Wetté, C., & Sanso, B. (2020). A machine learning framework for sleeping cell detection in a smart-city IoT telecommunications infrastructure. IEEE Access, 8, 61213-61225. https://doi.org/10.1109/access.2020.2983383

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document