Benoit Delcroix, Jérôme Le Ny, Michel Bernier, Muhammad Azam, Bingrui Qu et Jean-Simon Venne
Article de revue (2020)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Autre licence Télécharger (1MB) |
Abstract
Thermal models of buildings are helpful to forecast their energy use and to enhance the control of their mechanical systems. However, these models are building-specific and require a tedious, error-prone and time-consuming development effort relying on skilled building energy modelers. Compared to white-box and gray-box models, data-driven (black-box) models require less development time and a minimal amount of information about the building characteristics. In this paper, autoregressive neural network models are compared to gray-box and black-box linear models to simulate indoor temperatures. These models are trained, validated and compared to actual experimental data obtained for an existing commercial building in Montreal (QC, Canada) equipped with roof top units for air conditioning. Results show that neural networks mimic more accurately the thermal behavior of the building when limited information is available, compared to gray-box and black-box linear models. The gray-box model does not perform adequately due to its under-parameterized nature, while the linear models cannot capture non-linear phenomena such as radiative heat transfer and occupancy. Therefore, the neural network models outperform the alternative models in the presented application, reaching a coefficient of determination R2 up to 0.824 and a root mean square error down to 1.11 °C, including the error propagation over time for a 1-week period with a 5-minute time-step. When considering a 50-hour time horizon, the best neural networks reach a much lower root mean square error of around 0.6 °C, which is suitable for applications such as model predictive control.
Sujet(s): |
2100 Génie mécanique > 2100 Génie mécanique 2100 Génie mécanique > 2109 Instrumentation et systèmes mécaniques 2500 Génie électrique et électronique > 2500 Génie électrique et électronique 2600 Robotique > 2604 Applications de systèmes intelligents |
---|---|
Département: |
Département de génie électrique Département de génie mécanique |
Organismes subventionnaires: | IVADO |
URL de PolyPublie: | https://publications.polymtl.ca/4220/ |
Titre de la revue: | Building Simulation (vol. 14, no 1) |
Maison d'édition: | Springer |
DOI: | 10.1007/s12273-019-0597-2 |
URL officielle: | https://doi.org/10.1007/s12273-019-0597-2 |
Date du dépôt: | 02 mars 2020 11:26 |
Dernière modification: | 25 sept. 2024 22:05 |
Citer en APA 7: | Delcroix, B., Le Ny, J., Bernier, M., Azam, M., Qu, B., & Venne, J.-S. (2020). Autoregressive neural networks with exogenous variables for indoor temperature prediction in buildings. Building Simulation, 14(1), 165-178. https://doi.org/10.1007/s12273-019-0597-2 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions