Hani Nemati et Michel Dagenais
Article de revue (2020)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Tous droits réservés Télécharger (810kB) |
Abstract
An agent-less technique to understand virtual machines (VMs) behavior and their changes during the VM life-cycle is essential for many performance analysis and debugging tasks in the cloud environment. Because of privacy and security issues, ease of deployment and execution overhead, the method preferably limits its data collection to the physical host level, without internal access to the VMs. We propose a host-based, precise method to recover execution flow of virtualized environments, regardless of the level of virtualization. Given a VM, the Any-Level VM Detection Algorithm (ADA) and Nested VM State Detection (NSD) Algorithm compute its execution path along with the state of virtual CPUs (vCPUs) from the host kernel trace. The state of vCPUs is displayed in an interactive trace viewer (TraceCompass) for further inspection. Then, a new approach for profiling threads and processes inside the VMs is proposed. Our proposed VM trace analysis algorithms have been open-sourced for further enhancements and to the benefit of other developers. Our new techniques are being evaluated with workloads generated by different benchmarking tools. These approaches are based on host hypervisor tracing, which brings a lower overhead (around 1%) as compared to other approaches.
Mots clés
execution flow analysis; nested virtual machine; performance analysis, tracing; reverse engineering
Sujet(s): |
2700 Technologie de l'information > 2706 Génie logiciel 2700 Technologie de l'information > 2715 Optimisation |
---|---|
Département: | Département de génie informatique et génie logiciel |
Organismes subventionnaires: | CRSNG/NSERC |
Numéro de subvention: | CRDPJ468687-14 |
URL de PolyPublie: | https://publications.polymtl.ca/4210/ |
Titre de la revue: | IEEE Transactions on Cloud Computing (vol. 8, no 3) |
Maison d'édition: | IEEE |
DOI: | 10.1109/tcc.2018.2828846 |
URL officielle: | https://doi.org/10.1109/tcc.2018.2828846 |
Date du dépôt: | 02 mars 2020 12:35 |
Dernière modification: | 25 sept. 2024 19:45 |
Citer en APA 7: | Nemati, H., & Dagenais, M. (2020). virtFlow: guest independent execution flow analysis across virtualized environments. IEEE Transactions on Cloud Computing, 8(3), 943-956. https://doi.org/10.1109/tcc.2018.2828846 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions