Daniel Berio, Memo Akten, Frédéric Fol Leymarie, Mick Grierson and Réjean Plamondon
Paper (2017)
An external link is available for this itemDepartment: | Department of Electrical Engineering |
---|---|
ISBN: | 9781450352093 |
PolyPublie URL: | https://publications.polymtl.ca/38998/ |
Conference Title: | 4th International Conference on Movement Computing (MOCO 2017) |
Conference Location: | London, UK |
Conference Date(s): | 2017-06-28 - 2017-06-30 |
Publisher: | ACM |
DOI: | 10.1145/3077981.3078049 |
Official URL: | https://doi.org/10.1145/3077981.3078049 |
Date Deposited: | 18 Apr 2023 15:04 |
Last Modified: | 08 Apr 2025 12:22 |
Cite in APA 7: | Berio, D., Akten, M., Leymarie, F. F., Grierson, M., & Plamondon, R. (2017, June). Calligraphic stylisation learning with a physiologically plausible model of movement and recurrent neural networks [Paper]. 4th International Conference on Movement Computing (MOCO 2017), London, UK. https://doi.org/10.1145/3077981.3078049 |
---|---|
Statistics
Dimensions