<  Back to the Polytechnique Montréal portal

Analyse des performances de stockage, en mémoire et sur les périphériques d'entrée/sortie, à partir d'une trace d'exécution

Houssem Daoud

PhD thesis (2019)

[img] Restricted to: Repository staff only until 12 June 2020.
Cite this document: Daoud, H. (2019). Analyse des performances de stockage, en mémoire et sur les périphériques d'entrée/sortie, à partir d'une trace d'exécution (PhD thesis, Polytechnique Montréal). Retrieved from https://publications.polymtl.ca/3847/
Show abstract Hide abstract

Abstract

Le stockage des données est vital pour l’industrie informatique. Les supports de stockage doivent être rapides et fiables pour répondre aux demandes croissantes des entreprises. Les technologies de stockage peuvent être classifiées en deux catégories principales : stockage de masse et stockage en mémoire. Le stockage de masse permet de sauvegarder une grande quantité de données à long terme. Les données sont enregistrées localement sur des périphériques d’entrée/sortie, comme les disques durs (HDD) et les Solid-State Drive (SSD), ou en ligne sur des systèmes de stockage distribué. Le stockage en mémoire permet de garder temporairement les données nécessaires pour les programmes en cours d’exécution. La mémoire vive est caractérisée par sa rapidité d’accès, indispensable pour fournir rapidement les données à l’unité de calcul du processeur. Les systèmes d’exploitation utilisent plusieurs mécanismes pour gérer les périphériques de stockage, par exemple les ordonnanceurs de disque et les allocateurs de mémoire. Le temps de traitement d’une requête de stockage est affecté par l’interaction entre plusieurs soussystèmes, ce qui complique la tâche de débogage. Les outils existants, comme les outils d’étalonnage, permettent de donner une vague idée sur la performance globale du système, mais ne permettent pas d’identifier précisément les causes d’une mauvaise performance. L’analyse dynamique par trace d’exécution est très utile pour l’étude de performance des systèmes. Le traçage permet de collecter des données précises sur le fonctionnement du système, ce qui permet de détecter des problèmes de performance difficilement identifiables. L’objectif de cette thèse est de fournir un outil permettant d’analyser les performances de stockage, en mémoire et sur les périphériques d’entrée/sortie, en se basant sur les traces d’exécution. Les défis relevés par cet outil sont : collecter les données nécessaires à l’analyse depuis le noyau et les programmes en mode utilisateur, limiter le surcoût du traçage et la taille des traces générées, synchroniser les différentes traces, fournir des analyses multiniveau couvrant plusieurs aspects de la performance et enfin proposer des abstractions permettant aux utilisateurs de facilement comprendre les traces.----------ABSTRACT: Data storage is an essential resource for the computer industry. Storage devices must be fast and reliable to meet the growing demands of the data-driven economy. Storage technologies can be classified into two main categories: mass storage and main memory storage. Mass storage can store large amounts of data persistently. Data is saved locally on input/output devices, such as Hard Disk Drives (HDD) and Solid-State Drives (SSD), or remotely on distributed storage systems. Main memory storage temporarily holds the necessary data for running programs. Main memory is characterized by its high access speed, essential to quickly provide data to the Central Processing Unit (CPU). Operating systems use several mechanisms to manage storage devices, such as disk schedulers and memory allocators. The processing time of a storage request is affected by the interaction between several subsystems, which complicates the debugging task. Existing tools, such as benchmarking tools, provide a general idea of the overall system performance, but do not accurately identify the causes of poor performance. Dynamic analysis through execution tracing is a solution for the detailed runtime analysis of storage systems. Tracing collects precise data about the internal behavior of the system, which helps in detecting performance problems that are difficult to identify. The goal of this thesis is to provide a tool to analyze storage performance based on lowlevel trace events. The main challenges addressed by this tool are: collecting the required data using kernel and userspace tracing, limiting the overhead of tracing and the size of the generated traces, synchronizing the traces collected from different sources, providing multi-level analyses covering several aspects of storage performance, and lastly proposing abstractions allowing users to easily understand the traces. We carefully designed and inserted the instrumentation needed for the analyses. The tracepoints provide full visibility into the system and track the lifecycle of storage requests, from creation to processing. The Linux Trace Toolkit Next Generation (LTTng), a free and low-overhead tracer, is used for data collection. This tracer is characterized by its stability, and efficiency with highly parallel applications, thanks to the lock-free synchronization mechanisms used to update the content of the trace buffers. We also contributed to the creation of a patch that allows LTTng to capture the call stacks of userspace events.

Open Access document in PolyPublie
Department: Département de génie informatique et génie logiciel
Dissertation/thesis director: Michel Dagenais
Date Deposited: 12 Jun 2019 15:20
Last Modified: 04 Jul 2019 16:04
PolyPublie URL: https://publications.polymtl.ca/3847/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only