<  Retour au portail Polytechnique Montréal

Simulation-assisted design of microfluidic sample traps for optimal trapping and culture of non-adherent single cells, tissues, and spheroids

Nassim Rousset, Frédéric Monet et Thomas Gervais

Article de revue (2017)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (567kB)
Afficher le résumé
Cacher le résumé

Abstract

This work focuses on modelling design and operation of "microfluidic sample traps" (MSTs). MSTs regroup a widely used class of microdevices that incorporate wells, recesses or chambers adjacent to a channel to individually trap, culture and/or release submicroliter 3D tissue samples ranging from simple cell aggregates and spheroids, to ex vivo tissue samples and other submillimetre-scale tissue models. Numerous MST designs employing various trapping mechanisms have been proposed in the literature, spurring the development of 3D tissue models for drug discovery and personalized medicine. Yet, there lacks a general framework to optimize trapping stability, trapping time, shear stress, and sample metabolism. Herein, the effects of hydrodynamics and diffusion-reaction on tissue viability and device operation are investigated using analytical and finite element methods with systematic parametric sweeps over independent design variables chosen to correspond to the four design degrees of freedom. Combining different results, we show that, for a spherical tissue of diameter d &lt; 500 mu m, the simplest, closest to optimal trap shape is a cube of dimensions w equal to twice the tissue diameter: w = 2d. Furthermore, to sustain tissues without perfusion, available medium volume per trap needs to be 100x the tissue volume to ensure optimal metabolism for at least 24 hours.

Mots clés

Biomedical engineering; Fluid dynamics; Lab-on-a-chip

Sujet(s): 1900 Génie biomédical > 1900 Génie biomédical
2200 Mécanique des fluides > 2200 Mécanique des fluides
3100 Physique > 3100 Physique
Département: Département de génie physique
Institut de génie biomédical
Organismes subventionnaires: CRSNG/NSERC, FRQNT
Numéro de subvention: RGPIN2014-06409, 185159
URL de PolyPublie: https://publications.polymtl.ca/3542/
Titre de la revue: Scientific Reports (vol. 7, no 1)
Maison d'édition: Springer Nature
DOI: 10.1038/s41598-017-00229-1
URL officielle: https://doi.org/10.1038/s41598-017-00229-1
Date du dépôt: 20 févr. 2019 12:51
Dernière modification: 29 sept. 2023 18:23
Citer en APA 7: Rousset, N., Monet, F., & Gervais, T. (2017). Simulation-assisted design of microfluidic sample traps for optimal trapping and culture of non-adherent single cells, tissues, and spheroids. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-00229-1

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document