<  Retour au portail Polytechnique Montréal

Expiratory and inspiratory cries detection using different signals' decomposition techniques

Lina Abou-Abbas, Chakib Tadj, Christian Gargour et Leila Montazeri

Article de revue (2017)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

This paper addresses the problem of automatic cry signal segmentation for the purposes of infant cry analysis. The main goal is to automatically detect expiratory and inspiratory phases from recorded cry signals. The approach used in this paper is made up of three stages: signal decomposition, features extraction, and classification. In the first stage, short-time Fourier transform, empirical mode decomposition (EMD), and wavelet packet transform have been considered. In the second stage, various set of features have been extracted, and in the third stage, two supervised learning methods, Gaussian mixture models and hidden Markov models, with four and five states, have been discussed as well. The main goal of this work is to investigate the EMD performance and to compare it with the other standard decomposition techniques. A combination of two and three intrinsic mode functions (IMFs) that resulted from EMD has been used to represent cry signal. The performance of nine different segmentation systems has been evaluated. The experiments for each system have been repeated several times with different training and testing datasets, randomly chosen using a 10-fold cross-validation procedure. The lowest global classification error rates of around 8.9% and 11.06% have been achieved using a Gaussian mixture models classifier and a hidden Markov models classifier, respectively. Among all IMF combinations, the winner combination is IMF3+IMF4+IMF5.

Mots clés

Gaussian mixture models; automatic segmentation; empirical mode decomposition; hidden Markov models; wavelet packet transform; Acoustics; Crying; Databases, Factual; Exhalation; Female; Humans; Infant; Infant Behavior; Infant, Newborn; Inhalation; Male; Markov Chains; Pattern Recognition, Automated; Signal Processing, Computer-Assisted; Sound Spectrography; Voice Quality; Wavelet Analysis

Sujet(s): 2500 Génie électrique et électronique > 2500 Génie électrique et électronique
2500 Génie électrique et électronique > 2514 Traitement des signaux numériques
Département: Département de génie électrique
Organismes subventionnaires: Bill and Melinda Gates Foundation
Numéro de subvention: OPP1067980
URL de PolyPublie: https://publications.polymtl.ca/3530/
Titre de la revue: Journal of Voice (vol. 31, no 2)
Maison d'édition: Elsevier
DOI: 10.1016/j.jvoice.2016.05.015
URL officielle: https://doi.org/10.1016/j.jvoice.2016.05.015
Date du dépôt: 07 déc. 2018 13:41
Dernière modification: 26 sept. 2024 23:48
Citer en APA 7: Abou-Abbas, L., Tadj, C., Gargour, C., & Montazeri, L. (2017). Expiratory and inspiratory cries detection using different signals' decomposition techniques. Journal of Voice, 31(2), 259.E13-259.E28. https://doi.org/10.1016/j.jvoice.2016.05.015

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document