<  Back to the Polytechnique Montréal portal

Geometrical variations in white and gray matter affect the biomechanics of spinal cord injuries more than the arachnoid space

Léo Fradet, Pierre-Jean Arnoux, Virginie Callot and Yvan Petit

Article (2016)

[img]
Preview
Published Version
Terms of Use: Creative Commons Attribution.
Download (462kB)
Cite this document: Fradet, L., Arnoux, P.-J., Callot, V. & Petit, Y. (2016). Geometrical variations in white and gray matter affect the biomechanics of spinal cord injuries more than the arachnoid space. Advances in Mechanical Engineering, 8(8), p. 168781401666470. doi:10.1177/1687814016664703
Show abstract Hide abstract

Abstract

Traumatic spinal cord contusions lead to loss of quality of life, but their pathomechanisms are not fully understood. Previous studies have underlined the contribution of the cerebrospinal fluid in spinal cord protection. However, it remains unclear how important the contribution of the cerebrospinal fluid is relative to other factors such as the white/gray matter ratio. A finite element model of the spinal cord and surrounding morphologic features was used to investigate the spinal cord contusion mechanisms, considering subarachnoid space and white/gray matter ratio. Two vertebral segments (T6 and L1) were impacted transversely at 4.5ms(-1), which demonstrated three major results:While the presence of cerebrospinal fluid plays a significant contributory role in spinal cord protection (compression percentage decreased by up to 19%), the arachnoid space variation along the spine appears to have a limited (3% compression decrease) impact.Differences in the white and gray matter geometries from lumbar to thoracic spine levels decrease spinal cord compression by up to 14% at the thoracic level.Stress distribution in the sagittal spinal cord section was consistent with central cord syndrome, and local stress concentration on the anterior part of the spinal cord being highly reduced by the presence of cerebrospinal fluid.The use of a refined spinal cord finite element method showed that all the geometrical parameters are involved in the spinal cord contusion mechanisms. Hence, spinal cord injury criteria must be considered at each vertebral level.

Uncontrolled Keywords

Modèle numérique; Interaction fluide structure; Méthode des éléments finis; Blessure; Moelle épinière; Biomécanique; Spinal cord injury; Contusion; Finite element model; Fluid-structure interaction; White and gray matter geometry

Open Access document in PolyPublie
Subjects: 1900 Génie biomédical > 1903 Biomécanique
2100 Génie mécanique > 2100 Génie mécanique
9000 Sciences médicales > 9000 Sciences médicales
Department: Département de génie mécanique
Research Center: Non applicable
Funders: CRSNG / NSERC, Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux (IFSTTAR), Canada Research Chairs (CRC), A*MIDEX, Fondation santé, sport et développement durable (Chaire Neurotraumatisme, Aix-Marseille Université )
Grant number: ANR-11-IDEX-0001-02
Date Deposited: 23 Nov 2018 10:12
Last Modified: 24 Nov 2018 01:20
PolyPublie URL: https://publications.polymtl.ca/3493/
Document issued by the official publisher
Journal Title: Advances in Mechanical Engineering (vol. 8, no. 8)
Publisher: Sage Publishing
Official URL: https://doi.org/10.1177/1687814016664703

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Dimensions

Repository Staff Only