Shahabeddin Vahdat, Ovidiu Lungu, Julien Cohen-Adad, Veronique Marchand-Pauvert, Habib Benali et Julien Doyon
Article de revue (2015)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (860kB) |
Abstract
The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6-C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain-spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations.
Mots clés
Brain; Female; Healthy Volunteers; Humans; Learning; Magnetic Resonance Imaging; Male; Motor Skills; Spinal Cord; Young Adult
Sujet(s): | 2500 Génie électrique et électronique > 2500 Génie électrique et électronique |
---|---|
Département: | Département de génie électrique |
Organismes subventionnaires: | Natural Sciences and Engineering Research Council of Canada, SensoriMotor Rehabilitation Research Team (SMRRT), Canadian Institutes of Health Research, SensoriMotor Rehabilitation Research Team (SMRRT), Canadian Institutes of Health Research |
Numéro de subvention: | RGPIN-2014-06318, RMF111622 |
URL de PolyPublie: | https://publications.polymtl.ca/3482/ |
Titre de la revue: | PLOS Biology (vol. 13, no 6) |
Maison d'édition: | PLOS |
DOI: | 10.1371/journal.pbio.1002186 |
URL officielle: | https://doi.org/10.1371/journal.pbio.1002186 |
Date du dépôt: | 08 nov. 2018 16:05 |
Dernière modification: | 27 sept. 2024 05:05 |
Citer en APA 7: | Vahdat, S., Lungu, O., Cohen-Adad, J., Marchand-Pauvert, V., Benali, H., & Doyon, J. (2015). Simultaneous Brain–Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning. PLOS Biology, 13(6). https://doi.org/10.1371/journal.pbio.1002186 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions