Nedialko I. Krouchev, Simon M. Danner, Alain Vinet, Frank Rattay et Mohamad Sawan
Article de revue (2014)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (718kB) |
Abstract
Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP's) by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e. g. minimized side-effects) and engineering (e. g. maximized battery-life) efficiency. This has typically been addressed by simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints - e.g. AP's are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain - e. g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in closed form the general template of the membrane-potential's temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse's shape whereas a rectangular pulse is most frequently optimal for short pulse durations.
Mots clés
Algorithms; Animals; Axons; Biomedical Engineering; Computer Simulation; Electric Stimulation; Equipment Design; Humans; Mathematics; Models, Theoretical; Myelin Sheath; Peripheral Nervous System; Temperature
Sujet(s): | 2500 Génie électrique et électronique > 2500 Génie électrique et électronique |
---|---|
Département: | Département de génie électrique |
Centre de recherche: | Autre |
Organismes subventionnaires: | Fonds de recherche du Quebec - Nature et technologies and the Natural Sciences, Engineering Research Council of Canada, Vienna Science and Technology Fund |
Numéro de subvention: | LS11-057 |
URL de PolyPublie: | https://publications.polymtl.ca/3463/ |
Titre de la revue: | PLOS One (vol. 9, no 3) |
Maison d'édition: | PLOS |
DOI: | 10.1371/journal.pone.0090480 |
URL officielle: | https://doi.org/10.1371/journal.pone.0090480 |
Date du dépôt: | 22 nov. 2018 15:36 |
Dernière modification: | 28 sept. 2024 08:56 |
Citer en APA 7: | Krouchev, N. I., Danner, S. M., Vinet, A., Rattay, F., & Sawan, M. (2014). Energy-Optimal Electrical-Stimulation Pulses Shaped by the Least-Action Principle. PLOS One, 9(3). https://doi.org/10.1371/journal.pone.0090480 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions