<  Retour au portail Polytechnique Montréal

Energy-Optimal Electrical-Stimulation Pulses Shaped by the Least-Action Principle

Nedialko I. Krouchev, Simon M. Danner, Alain Vinet, Frank Rattay et Mohamad Sawan

Article de revue (2014)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (718kB)
Afficher le résumé
Cacher le résumé

Abstract

Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP's) by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e. g. minimized side-effects) and engineering (e. g. maximized battery-life) efficiency. This has typically been addressed by simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints - e.g. AP's are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain - e. g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in closed form the general template of the membrane-potential's temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse's shape whereas a rectangular pulse is most frequently optimal for short pulse durations.

Mots clés

Algorithms; Animals; Axons; Biomedical Engineering; Computer Simulation; Electric Stimulation; Equipment Design; Humans; Mathematics; Models, Theoretical; Myelin Sheath; Peripheral Nervous System; Temperature

Sujet(s): 2500 Génie électrique et électronique > 2500 Génie électrique et électronique
Département: Département de génie électrique
Centre de recherche: Autre
Organismes subventionnaires: Fonds de recherche du Quebec - Nature et technologies and the Natural Sciences, Engineering Research Council of Canada, Vienna Science and Technology Fund
Numéro de subvention: LS11-057
URL de PolyPublie: https://publications.polymtl.ca/3463/
Titre de la revue: PLOS One (vol. 9, no 3)
Maison d'édition: PLOS
DOI: 10.1371/journal.pone.0090480
URL officielle: https://doi.org/10.1371/journal.pone.0090480
Date du dépôt: 22 nov. 2018 15:36
Dernière modification: 28 sept. 2024 08:56
Citer en APA 7: Krouchev, N. I., Danner, S. M., Vinet, A., Rattay, F., & Sawan, M. (2014). Energy-Optimal Electrical-Stimulation Pulses Shaped by the Least-Action Principle. PLOS One, 9(3). https://doi.org/10.1371/journal.pone.0090480

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document