<  Back to the Polytechnique Montréal portal

Automatic Mesh-Based Segmentation of Multiple Organs in MR Images

Majid Reza Moheb Pour

PhD thesis (2018)

[img]
Preview
Download (8MB)
Cite this document: Moheb Pour, M. R. (2018). Automatic Mesh-Based Segmentation of Multiple Organs in MR Images (PhD thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/3258/
Show abstract Hide abstract

Abstract

La segmentation de structures anatomiques multiples dans des images de résonance magnétique (RM) est souvent requise dans des applications de génie biomédical telles que la simulation numérique, la chirurgie guidée par l’image, la planification de traitements, etc. De plus, il y a un besoin croissant pour une segmentation automatique d’organes multiples et de structures complexes à partir de cette modalité d’imagerie. Il existe plusieurs techniques de segmentation multi-objets qui ont été appliquées avec succès sur des images de tomographie axiale à rayons-X (CT). Cependant, dans le cas des images RM cette tâche est plus difficile en raison de l’inhomogénéité des intensités dans ces images et de la variabilité dans l’apparence des structures anatomiques. Par conséquent, l’état de l’art sur la segmentation multi-objets sur des images RM est beaucoup plus faible que celui sur les images CT. Parmi les travaux qui portent sur la segmentation d’images RM, les approches basées sur la segmentation de régions sont sensibles au bruit et la non uniformité de l’intensité dans les images. Les approches basées sur les contours ont de la difficulté à regrouper les informations sur les contours de sorte à produire un contour fermé cohérent. Les techniques basées sur les atlas peuvent avoir des problèmes en présence de structures complexes avec une grande variabilité anatomique. Les modèles déformables représentent une des méthodes les plus populaire pour la détection automatique de différents organes dans les images RM. Cependant, ces modèles souffrent encore d’une limitation importante qui est leur sensibilité à la position initiale et la forme du modèle. Une initialisation inappropriée peut conduire à un échec dans l’extraction des frontières des objets. D’un autre côté, le but ultime d’une segmentation automatique multi-objets dans les images RM est de produire un modèle qui peut aider à extraire les caractéristiques structurelles d’organes distincts dans les images. Les méthodes d’initialisation automatique actuelles qui utilisent différents descripteurs ne réussissent pas complètement l’extraction d’objets multiples dans les images RM. Nous avons besoin d’exploiter une information plus riche qui se trouve dans les contours des organes. Dans ce contexte les maillages adaptatifs anisotropiques semblent être une solution potentielle au problème soulevé. Les maillages adaptatifs anisotropiques construits à partir des images RM contiennent de l’information à un plus haut niveau d’abstraction représentant les éléments, d’une orientation et d’une forme donnée, qui constituent les différents organes dans l’image. Les méthodes existantes pour la construction de maillages adaptatifs sont basées sur les intensités dans l’image et possèdent une limitation pratique qui est l’alignement inadéquat des éléments du maillage en présence de contours inclinés dans l’image. Par conséquent, nous avons aussi besoin d’améliorer le processus d’adaptation de maillage pour produire une meilleure représentation de l’image basée sur un maillage.----------ABSTRACT: Segmentation of multiple anatomical structures in MR images is often required for biomedical engineering applications such as clinical simulation, image-guided surgery, treatment planning, etc. Moreover, there is a growing need for automatic segmentation of multiple organs and complex structures from this medical imaging modality. Many successful multi-object segmentation attempts were introduced for CT images. However in the case of MR images it is a more challenging task due to intensity inhomogeneity and variability of anatomy appearance. Therefore, state-of-the-art in multi-object MR segmentation is very inferior to that of CT images. In literature dealing with MR image segmentation, the region-based approaches are sensitive to noise and non-uniformity in the input image. The edge-based approaches are challenging to group the edge information into a coherent closed contour. The atlas-based techniques can be problematic for complicated structures with anatomical variability. Deformable models are among the most popular methods for automatic detection of different organs in MR images. However they still have an important limitation which is that they are sensitive to initial position and shape of the model. An unsuitable initialization may provide failure to capture the true boundaries of the objects. On the other hand, a useful aim for an automatic multi-object MR segmentation is to provide a model which promotes understanding of the structural features of the distinct objects within the MR images. The current automatic initialization methods which have used different descriptors are not completely successful in extracting multiple objects from MR images and we need to find richer information that is available from edges. In this regard, anisotropic adaptive meshes seem to be a potential solution to the aforesaid limitation. Anisotropic adaptive meshes constructed from MR images contain higher level, abstract information about the anatomical structures of the organs within the image retained as the elements shape and orientation. Existing methods for constructing adaptive meshes based on image features have a practical limitation where manifest itself in inadequate mesh elements alignment to inclined edges in the image. Therefore, we also have to enhance mesh adaptation process to provide a better mesh-based representation. In this Ph.D. project, considering the highlighted limitations we are going to present a novel method for automatic segmentation of multiple organs in MR images by incorporating mesh adaptation techniques. In our progress, first, we improve an anisotropic adaptation process for the meshes that are constructed from MR images where the mesh elements align adequately to the image content and improve mesh anisotropy along edges in all directions. Then the resulting adaptive meshes are used for initialization of multiple active models which leads to extract initial object boundaries close to the true boundaries of multiple objects simultaneously. Finally, the Vector Field Convolution method is utilized to guide curve evolution towards the object boundaries to obtain the final segmentation results and present a better performance in terms of speed and accuracy.

Open Access document in PolyPublie
Department: Département de génie informatique et génie logiciel
Dissertation/thesis director: François Guibault and Farida Cheriet
Date Deposited: 18 Oct 2018 13:56
Last Modified: 27 Jun 2019 16:47
PolyPublie URL: https://publications.polymtl.ca/3258/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only