Lucie Tabor, James Alexandre Goulet, Jean-Philippe Charron et Clelia Desmettre
Article de revue (2018)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Tous droits réservés Télécharger (1MB) |
Abstract
This paper proposes an extension to Gaussian process regression (GPR) for data sets composed of only a few replicated specimens and displaying a heteroscedastic behavior. Because there are several factors that are out of the control of experimenters, it is often impossible to reproduce identical specimens for a same experiment. Moreover, observations from laboratory experiments typically display a heteroscedastic interspecimen variability. Because experiments and specimen manufacturing are expensive, it is uncommon to have more than three specimens to build a model for the observed responses. The method proposed in this paper uses GPR to predict each tested specimen using a shared prior structure and models the global heteroscedastic behavior by combining observations using conjugate prior distributions. An application of the method to high-performance fiber-reinforced concrete experiments highlights fiber addition benefits for reducing water permeability caused by macrocracks.
Sujet(s): | 1000 Génie civil > 1000 Génie civil |
---|---|
Département: | Département des génies civil, géologique et des mines |
URL de PolyPublie: | https://publications.polymtl.ca/3026/ |
Titre de la revue: | Journal of Engineering Mechanics (vol. 144, no 6) |
Maison d'édition: | ASCE |
DOI: | 10.1061/(asce)em.1943-7889.0001466 |
URL officielle: | https://doi.org/10.1061/%28asce%29em.1943-7889.000... |
Date du dépôt: | 19 avr. 2018 12:44 |
Dernière modification: | 26 sept. 2024 19:55 |
Citer en APA 7: | Tabor, L., Goulet, J. A., Charron, J.-P., & Desmettre, C. (2018). Probabilistic modeling of heteroscedastic laboratory experiments using Gaussian process regression. Journal of Engineering Mechanics, 144(6), 1-10. https://doi.org/10.1061/%28asce%29em.1943-7889.0001466 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions