<  Retour au portail Polytechnique Montréal

Optimization and Mining Methods for Effective Real-Time Embedded Systems

Rabeh Ayari

Thèse de doctorat (2018)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Conditions d'utilisation: Tous droits réservés
Télécharger (12MB)
Afficher le résumé
Cacher le résumé

Résumé

L'Internet des objets (IoT) est le réseau d'objets interdépendants, comme les voitures autonomes, les appareils électroménagers, les téléphones intelligents et d'autres systèmes embarqués. Ces systèmes embarqués combinent le matériel, le logiciel et la connection réseau permettant le traitement de données à l'aide des puissants centres de données de l'informatique nuagique. Cependant, la croissance exponentielle des applications de l'IoT a remodelé notre croyance sur l'informatique nuagique, et des certitudes durables sur ses capacités ont dû être mises à jour. De nos jours, l'informatique nuagique centralisé et classique rencontre plusieurs défis, tels que la latence du trafic, le temps de réponse et la confidentialité des données. Alors, la tendance dans le traitement des données générées par les dispositifs embarqués interconnectés consiste à faire plus de calcul au niveau du dispositif au bord du réseau. Cette possibilité de faire du traitement local aide à réduire la latence pour les applications temps réel présentant des fortes contraintes temporelles. Aussi, ça permet d'améliorer le traitement des quantités massives de données générées par ces périphériques. Réussir cette transition nécessite la conception de systèmes embarqués de haute performance en explorant efficacement les alternatives de conception (i.e. Exploration efficace de l'espace des solutions), en optimisant la topologie de déploiement des applications temps réel sur des architectures multi-processeurs (i.e. la façon dont le logiciel utilise le matériel) , et des algorithme d'exploration permettant un fonctionnement plus intelligent de ces dispositifs. Des efforts de recherche récents ont conduit à diverses approches automatisées facilitant la conception et l'amélioration du fonctionnement des système embarqués. Cependant, ces techniques existantes présentent plusieurs défis majeurs. Ces défis sont fortement présents sur les systèmes embarqués temps réel. Quatre des principaux défis sont : (1) Le manque de techniques d'exploration de données en ligne permettant l'amélioration des performances des systèmes embarqués. (2) L'utilisation inefficace des ressources informatiques des systèmes multiprocesseurs lors du déploiement de logiciels là dessus ; (3) L'exploration pseudo-aléatoire de l'espace des solutions (4) La sélection de la configuration appropriée à partir de la listes des solutions optimales obtenue.

Abstract

The Internet of things (IoT) is the network of interrelated devices or objects, such as selfdriving cars, home appliances, smart-phones and other embedded computing systems. It combines hardware, software, and network connectivity enabling data processing using powerful cloud data centers. However, the exponential rise of IoT applications reshaped our belief on the cloud computing, and long-lasting certainties about its capabilities had to be updated. The classical centralized cloud computing is encountering several challenges, such as traffic latency, response time, and data privacy. Thus, the trend in the processing of the generated data of IoT inter-connected embedded devices has shifted towards doing more computation closer to the device in the edge of the network. This possibility to do on-device processing helps to reduce latency for critical real-time applications and better processing of the massive amounts of data being generated by the these devices. Succeeding this transition towards the edge computing requires the design of high-performance embedded systems by efficiently exploring design alternatives (i.e. efficient Design Space Exploration), optimizing the deployment topology of multi-processor based real-time embedded systems (i.e. the way the software utilizes the hardware), and light mining techniques enabling smarter functioning of these devices. Recent research efforts on embedded systems have led to various automated approaches facilitating the design and the improvement of their functioning. However, existing methods and techniques present several major challenges. These challenges are more relevant when it comes to real-time embedded systems. Four of the main challenges are : (1) The lack of online data mining techniques that can enhance embedded computing systems functioning on the fly ; (2) The inefficient usage of computing resources of multi-processor systems when deploying software on ; (3) The pseudo-random exploration of the design space ; (4) The selection of the suitable implementation after performing the otimization process.

Département: Département de génie informatique et génie logiciel
Programme: Génie informatique
Directeurs ou directrices: Gabriela Nicolescu et Giovanni Beltrame
URL de PolyPublie: https://publications.polymtl.ca/3016/
Université/École: École Polytechnique de Montréal
Date du dépôt: 18 juin 2018 14:45
Dernière modification: 27 sept. 2024 06:35
Citer en APA 7: Ayari, R. (2018). Optimization and Mining Methods for Effective Real-Time Embedded Systems [Thèse de doctorat, École Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/3016/

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Actions réservées au personnel

Afficher document Afficher document