Kadjo Gwandy Kouamé, Naser Ezzati-Jivan et Michel Dagenais
Communication écrite (2015)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Tous droits réservés Télécharger (420kB) |
Abstract
Execution traces are frequently used to study system run-time behaviour and to detect problems. However, the huge amount of data in an execution trace may complexify its analysis. Moreover, users are not usually interested in all events of a trace, hence the need for a proper filtering approach. Filtering is used to generate an enhanced trace, with a reduced size and complexity, that is easier to analyse. The approach described in this paper allows to define custom filtering patterns, declaratively in XML, to concentrate the analysis on the most important and interesting events. The filtering scenarios include syntaxes to describe various analysis patterns using finite state machines. The patterns range from very simple event filtering to complex multi-level event abstraction, covering various types of synthetic behaviours that can be captured from execution trace data. The paper provides the details on this data-driven filtering approach and some interesting use cases for the trace events generated by the LTTng Linux kernel tracer.
Mots clés
LTTng, Trace Analysis, Performance analysis, Data Filtering
Sujet(s): |
2700 Technologie de l'information > 2705 Logiciels et développement 2700 Technologie de l'information > 2720 Logiciel de systèmes informatiques |
---|---|
Département: | Département de génie informatique et génie logiciel |
Organismes subventionnaires: | CRSNG/NSERC |
Numéro de subvention: | CRDPJ468687-14 |
URL de PolyPublie: | https://publications.polymtl.ca/2985/ |
Nom de la conférence: | IEEE International Congress on Big Data (BigData Congress 2015) |
Lieu de la conférence: | New York, NY, USA |
Date(s) de la conférence: | 2015-06-27 - 2015-07-02 |
Maison d'édition: | IEEE |
DOI: | 10.1109/bigdatacongress.2015.112 |
URL officielle: | https://doi.org/10.1109/bigdatacongress.2015.112 |
Date du dépôt: | 13 févr. 2018 10:39 |
Dernière modification: | 28 sept. 2024 06:46 |
Citer en APA 7: | Kouamé, K. G., Ezzati-Jivan, N., & Dagenais, M. (juin 2015). A flexible data-driven approach for execution trace filtering [Communication écrite]. IEEE International Congress on Big Data (BigData Congress 2015), New York, NY, USA (6 pages). https://doi.org/10.1109/bigdatacongress.2015.112 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions