<  Retour au portail Polytechnique Montréal

Multi-scale navigation of large trace data: A survey

Naser Ezzati-Jivan et Michel Dagenais

Article de revue (2017)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Tous droits réservés
Télécharger (608kB)
Afficher le résumé
Cacher le résumé

Abstract

Dynamic analysis through execution traces is frequently used to analyze the runtime behavior of software systems. However, tracing long running executions generates voluminous data, which are complicated to analyze and manage. Extracting interesting performance or correctness characteristics out of large traces of data from several processes and threads is a challenging task. Trace abstraction and visualization are potential solutions to alleviate this challenge. Several efforts have been made over the years in many subfields of computer science for trace data collection, maintenance, analysis, and visualization. Many analyses start with an inspection of an overview of the trace, before digging deeper and studying more focused and detailed data. These techniques are common and well supported in geographical information systems, automatically adjusting the level of details depending on the scale. However, most trace visualization tools operate at a single level of representation, which are not adequate to support multilevel analysis. Sophisticated techniques and heuristics are needed to address this problem. Multi-scale (multilevel) visualization with support for zoom and focus operations is an effective way to enable this kind of analysis. Considerable research and several surveys are proposed in the literature in the field of trace visualization. However, multi-scale visualization has yet received little attention. In this paper, we provide a survey and methodological structure for categorizing tools and techniques aiming at multi-scale abstraction and visualization of execution trace data and discuss the requirements and challenges faced to be able to meet evolving user demands.

Mots clés

Data abstraction ; data visualization ; multilevel data analysis ; trace analysis

Sujet(s): 2700 Technologie de l'information > 2700 Technologie de l'information
Département: Département de génie informatique et génie logiciel
Organismes subventionnaires: CRSNG/NSERC, Ericsson Software Research, Development Canada
Numéro de subvention: CRDPJ468687-14
URL de PolyPublie: https://publications.polymtl.ca/2980/
Titre de la revue: Concurrency and Computation: Practice and Experience (vol. 29, no 10)
Maison d'édition: Wiley
DOI: 10.1002/cpe.4068
URL officielle: https://doi.org/10.1002/cpe.4068
Date du dépôt: 12 févr. 2018 16:55
Dernière modification: 28 sept. 2024 02:20
Citer en APA 7: Ezzati-Jivan, N., & Dagenais, M. (2017). Multi-scale navigation of large trace data: A survey. Concurrency and Computation: Practice and Experience, 29(10), 1-20. https://doi.org/10.1002/cpe.4068

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document