Houssem Daoud, Naser Ezzati-Jivan et Michel Dagenais
Communication écrite (2017)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Tous droits réservés Télécharger (306kB) |
Abstract
Excessive memory usage in software applications has become a frequent issue. A high degree of parallelism and the monitoring difficulty for the developer can quickly lead to memory shortage, or can increase the duration of garbage collection cycles. There are several solutions introduced to monitor memory usage in software. However they are neither efficient nor scalable. In this paper, we propose a dynamic tracing-based sampling algorithm to collect and analyse run time information and metrics for memory usage. It is implemented as a kernel module which gathers memory usage data from operating system structures only when a predefined condition is set or a threshold is passed. The thresholds and conditions are preset but can be changed dynamically, based on the application behavior. We tested our solutions to monitor several applications and our evaluation results show that the proposed method generates compact trace data and reduces the time needed for the analysis, without loosing precision.
Sujet(s): |
2700 Technologie de l'information > 2705 Logiciels et développement 2700 Technologie de l'information > 2713 Algorithmes |
---|---|
Département: |
Département de génie informatique et génie logiciel Département de génie mécanique |
Organismes subventionnaires: | CRSNG/NSERC, Prompt, Ericsson, EfficiOS |
Numéro de subvention: | CRDPJ468687-14 |
URL de PolyPublie: | https://publications.polymtl.ca/2979/ |
Nom de la conférence: | 2017 IEEE High Performance Extreme Computing Conference |
Lieu de la conférence: | Waltham, MA, USA |
Date(s) de la conférence: | 2017-09-12 - 2017-09-14 |
Maison d'édition: | IEEE |
DOI: | 10.1109/hpec.2017.8091061 |
URL officielle: | https://doi.org/10.1109/hpec.2017.8091061 |
Date du dépôt: | 12 févr. 2018 17:06 |
Dernière modification: | 28 sept. 2024 06:49 |
Citer en APA 7: | Daoud, H., Ezzati-Jivan, N., & Dagenais, M. (septembre 2017). Dynamic trace-based sampling algorithm for memory usage tracking of enterprise applications [Communication écrite]. 2017 IEEE High Performance Extreme Computing Conference, Waltham, MA, USA (7 pages). https://doi.org/10.1109/hpec.2017.8091061 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions