<  Retour au portail Polytechnique Montréal

Fine-grained nested virtual machine performance analysis through first level hypervisor tracing

Hani Nemati, Suchakrapani Datt Sharma et Michel Dagenais

Communication écrite (2017)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Tous droits réservés
Télécharger (502kB)
Afficher le résumé
Cacher le résumé

Abstract

Nowadays, nested VMs are often being used to address compatibility issues, security concerns, software scaling and continuous integration scenarios. With the increased adoption of nested VMs, there is a need for newer techniques to troubleshoot any unexpected behavior. Because of privacy and security issues, ease of deployment and execution overhead, these investigation techniques should preferably limit their data collection in most cases to the physical host level, without internal access to the VMs. This paper introduces the Nested Virtual Machine Detection Algorithm (NDA) - a host hypervisor based analysis method which can investigate the performance of nested VMs. NDA can uncover the CPU overhead entailed by the host hypervisor and guest hypervisors, and compare it to the CPU usage of Nested VMs. We further developed several graphical views, for the TraceCompass trace visualization tool, to display the virtual CPUs of VMs and their corresponding nested VMs, along with their states. These approaches are based on host hypervisor tracing, which brings a lower overhead (around 1%) as compared to other approaches. Based on our analysis and the implemented graphical views, our techniques can quickly detect different problems and their root causes, such as unexpected delays inside nested VMs.

Mots clés

Nested Virtualization, KVM, Performance Analysis, LTTng, TraceCompass, Process State

Sujet(s): 2700 Technologie de l'information > 2715 Optimisation
2700 Technologie de l'information > 2719 Architecture d'ordinateur et conception
Département: Département de génie informatique et génie logiciel
Organismes subventionnaires: CRSNG/NSERC
Numéro de subvention: CRDPJ468687-14
URL de PolyPublie: https://publications.polymtl.ca/2960/
Nom de la conférence: 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2017)
Lieu de la conférence: Madrid, Espagne
Date(s) de la conférence: 2017-05-14 - 2017-05-17
Maison d'édition: IEEE
DOI: 10.1109/ccgrid.2017.20
URL officielle: https://doi.org/10.1109/ccgrid.2017.20
Date du dépôt: 31 janv. 2018 17:09
Dernière modification: 27 sept. 2024 10:10
Citer en APA 7: Nemati, H., Sharma, S. D., & Dagenais, M. (mai 2017). Fine-grained nested virtual machine performance analysis through first level hypervisor tracing [Communication écrite]. 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2017), Madrid, Espagne (6 pages). https://doi.org/10.1109/ccgrid.2017.20

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document