<  Retour au portail Polytechnique Montréal

An adaptive Markov model for the timing analysis of probabilistic caches

Chao Chen et Giovanni Beltrame

Article de revue (2017)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Tous droits réservés
Télécharger (831kB)
Afficher le résumé
Cacher le résumé

Abstract

Accurate timing prediction for real-time embedded software execution is becoming a problem due to the increasing complexity of computer architecture, and the presence of mixed-criticality workloads. Probabilistic caches were proposed to set bounds to Worst Case Execution Time (WCET) estimates and help designers improve real-time embedded system resource use. Static Probabilistic Timing Analysis (SPTA) for probabilis- tic caches is nevertheless difficult to perform, because cache accesses depend on execution history, and the computational complexity of SPTA makes it intractable for calculation as the number of accesses increases. In this paper, we explore and improve SPTA for caches with evict-on-miss random replacement policy using a state space modeling technique. A nonhomogeneous Markov model is employed for single-path programs in discrete-time finite state space representation. To make this Markov model tractable, we limit the number of states and use an adaptive method for state modification. Experiments show that compared to the state-of-the-art methodology, the proposed adaptive Markov chain approach provides better results at the occurrence probability of 10^−15: in terms of accuracy, the state-of-the-art SPTA results are more conservative, by 11% more on average. In terms of computation time, our approach is not significantly different from the state-of-the-art SPTA.

Mots clés

Theory of computation, Probabilistic computation, Design and analysis of algorithms, Probabilistic, Real-time systems, Cache

Sujet(s): 2700 Technologie de l'information > 2713 Algorithmes
2700 Technologie de l'information > 2714 Mathématiques de l'informatique
Département: Département de génie informatique et génie logiciel
URL de PolyPublie: https://publications.polymtl.ca/2777/
Titre de la revue: ACM Transactions on Design Automation of Electronic Systems (vol. 23, no 1)
Maison d'édition: ACM
DOI: 10.1145/3123877
URL officielle: https://doi.org/10.1145/3123877
Date du dépôt: 02 oct. 2017 11:43
Dernière modification: 27 sept. 2024 07:20
Citer en APA 7: Chen, C., & Beltrame, G. (2017). An adaptive Markov model for the timing analysis of probabilistic caches. ACM Transactions on Design Automation of Electronic Systems, 23(1), 1-24. https://doi.org/10.1145/3123877

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document